Теория физического вакуума в популярном изложении
Теория физического вакуума в популярном изложении читать книгу онлайн
Популярная книга известного российского учёного, академика, доктора физических наук Г. И. Шипова посвящена одному из сложных вопросов современной физики - теории физического вакуума. Наука всё ближе подбирается к той грани, за которыми размываются, становятся неприменимыми устоявшиеся понятия и взгляды, возникают новые представления, совершенно неожиданные и непривычные. Но - сопоставленные с традиционным человеческим опытом и духовными знаниями - они показывают скрытую связь достижений восточной философии и метанауки с развитием современных научных представлений.
Для специалистов и практиков, искателей истины, всех интересующихся современным развитием научной и духовной мысли.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рассмотрим ускоренную локально инерциальную систему отсчета второго рода, связанную с центром масс однородного вращающегося диска (см. рис. 11). Предположим, что в некоторый момент времени с некоторой скоростью V, направленной параллельно оси диска, из диска выбрасывается масса Dm (см. рис. 45). В момент, когда масса Dm симметричным образом покидает вращающийся диск, силы инерции, действующие на центр масс, оказываются не скомпенсированными и он должен изменить свою линейную скорость относительно инерциальной системы отсчета.
Симметричный выброс массы в этом мысленном эксперименте происходит в результате действия каких-либо внутренних сил (например, сил упругости создаваемых пружиной). С позиций механики Ньютона этот эксперимент демонстрирует нарушение закона сохранения линейного импульса в данной изолированной механической системе в результате действия не скомпенсированных сил инерции.
Рис. 45. Из однородного вращающегося гироскопа выбрасывается масса Dm, в результате чего силы инерции, действующие на центр масс, оказываются неуравновешенными.
Вращающийся однородный диск представляет собой трехмерный гироскоп, поскольку вращение происходит в пространственных углах (и в данном случае используется один угол). Для того, чтобы перемещать центр масс трехмерного гироскопа за счет действия внутренних сил необходимо каждый раз выбрасывать массу и создавать таким образом не скомпенсированные силы инерции, действующие на его центр масс. Это напоминает разновидность реактивного движения, но только менее рациональное, чем существующее.
Существует возможность добиться такого же результата без выброса масс, если использовать устройство, представляющее собой четырехмерный гироскоп.
На рис. 46представлена схема четырехмерного гироскопа , у которого вращение происходит по одному пространственному углу фи одному пространственно-временному углу q. Он состоит из центральной массы М, на которой установлена ось О 1, вокруг которой на стержнях длинной rвращаются массы m. Вращение масс происходит синхронно, т.е. если одна масса повернулась на угол фпротив часовой стрелки, то другая масса повернулась на точно такой же угол по часовой стрелке. Если грузы вращаются вокруг оси О 1, то тело Мдвижется возвратно-поступательно вдоль оси X. Расчеты показывают, что на центр масс системы действуют две силы:
а) поступательная сила инерции:
F 1= (М + 2m)х''
б) проекция двух вращательных сил инерции на ось Х:
F 2= - 2mrw 2cosф - 2mrw' sinф.
Рис. 46. Принципиальная схема четырехмерного гироскопа.
Сумма этих сил равна нулю, поэтому центр масс четырехмерного гироскопа покоится или движется равномерно и прямолинейно, а ускоренная система отсчета, связанная с ним, оказывается локально инерциальной системой второго рода.
Изменить скорость центра масс четырехмерного гироскопа можно двумя способами:
1) подействовать на тело Мвнешней силой, что приведет к изменению силы F 1и нарушит баланс сил инерции;
2) изменить угловую скорость вращения w, что приведет к изменению силы F 2и так же нарушит баланс сил инерции.
4.6. Инерциоид Толчина.
Изменение скорости центра масс четырехмерного гироскопа, используя второй способ (без внешнего воздействия), можно осуществить на практике, если смонтировать на теле Мустройство (мотор-тормоз), которое будет менять угловую скорость вращения грузов в нужном секторе углов. Управляя с помощью мотор-тормоза силами инерции внутри четырехмерного гироскопа, мы получим движение его центра масс.
В России подобное устройство было сконструировано инженером В.Н. Толчиным ( рис. 47).
Рис. 47. Инерциоид Толчина.
Рис. 48. График не скомпенсированной силы инерции, действующей на центр масс четырехмерного гироскопа.
Рис. 49. Демонстрация результата работы мотор-тормоза. Не скомпенсированная сила инерции F с, созданная мотор-тормозом, действует на центр масс инерциоида.
Расчеты показывают, что не скомпенсированная сила инерции наиболее эффективно действует на центр масс инерциоида вблизи углов вращения 0° и 180° (см. рис. 48).
Обычно движение инерциоида начинается из состояния покоя его центра масс и с углов вращения грузов в секторе 180° - 330°. Когда вращающиеся грузы подходят к углу вращения 330° мотор-тормоз начинает ускорять вращение грузов (см. рис 49). Ускорение вращения идет в секторе углов 330° - 360°. В это время, длящееся для реальной модели, изображенной па рис. 47, всего 1/16 сек., тормозная колодка с пружиной действует на ось вращения грузов, нажимая на тормозной кулачек, жестко укрепленный на оси (см. рис. 49). В секторе углов 330° - 360° вращательная сила инерции F 2= - 2mrw 2cosф - 2mrw' sinфпревосходит поступательную силу инерции F 1= (М + 2m)х'' и центр масс начинает двигаться под действием не скомпенсированной силы инерции F с. Далее, в секторе углов 0° - 150° работа мотор-тормоза прекращается, и силы инерции оказываются уравновешенными. В это время, длящееся примерно 0,2 сек., центр масс инерциоида движется с постоянной скоростью порядка 10 см/сек.
Когда угол поворота составит 150°, тормозной кулачек набегает на тормозную колодку. В результате происходит процесс торможения вращения грузов в секторе углов 150° - 180°, что приводит к нарушению баланса сил инерции и появлению не скомпенсированной силы инерции F с. Эта сила уменьшает скорость движения центра от 10 см/сек. до нуля. Начиная с угла 180°, мотор-тормоз перестает работать, поэтому при вращении грузов в секторе углов 180° - 330° силы инерции, действующие на центр масс, уравновешены, и центр масс остается в состоянии покоя.
Рис. 50. Экспериментальный график движения центра масс инерциоида Толчина.
Начиная с угла 330°, мотор-тормоз вновь ускоряет вращение грузов и весь цикл повторяется. На рис. 50представлен типичный график движения центра масс инерциоида Толчина под действием работы мотор-тормоза. Из графика видно, что скорость центра масс меняется во время работы мотор-тормоза и остается постоянной (в среднем), когда грузы вращаются свободно. Этот факт не удается объяснить действием сил трения между колесами и подстилающей поверхностью, поскольку силы трения пассивны и их направление действия совпадает с одинаковым направлением движения колес и центра масс аппарата. Эксперименты показали, что на участке 2 есть область, где центр масс движется вперед, а колеса и корпус инерциоида движутся назад. Это доказывает непричастность сил трения к движению центра масс инерциоида.