-->

Бег за бесконечностью (с илл.)

На нашем литературном портале можно бесплатно читать книгу Бег за бесконечностью (с илл.), Потупа Александр Сергеевич-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Бег за бесконечностью (с илл.)
Название: Бег за бесконечностью (с илл.)
Дата добавления: 15 январь 2020
Количество просмотров: 280
Читать онлайн

Бег за бесконечностью (с илл.) читать книгу онлайн

Бег за бесконечностью (с илл.) - читать бесплатно онлайн , автор Потупа Александр Сергеевич

В книге рассказывается о современных представлениях об одной из самых быстроразвивающихся фундаментальных наук — физике элементарных частиц. Основное внимание уделено описанию сильновзаимодействующих частиц — адронов, их поведению в различных реакциях при высоких энергиях.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 17 18 19 20 21 22 23 24 25 ... 51 ВПЕРЕД
Перейти на страницу:

Задолго до открытия элементарных законов механического движения по земле прокатилось первое колесо. Большие лодки стали бороздить моря и океаны за много веков до рождения Архимеда. Да уж бог с ней, с древностью. Первый паровоз побежал по рельсам, когда солидные ученые мужи еще превозносили теорию невидимой тепловой субстанции — флогистона… Уже в начале нашего века король изобретателей Т. Эдисон, похвалявшийся тем, что никогда не заглянул ни в одну теоретическую книгу, получает свой 1093-й (!!) патент на изобретение в области электротехники…

Бег за бесконечностью (с илл.) - i_022.png

Но рядом уже развивается совсем иная деятельность. В 1895 году русский А. Попов и итальянец Г. Маркони демонстрируют удивительные приборы — первые радиоприемные устройства, в основе изобретения которых лежит не простой поиск методом перебора, а четкое представление о недавно открытых Г. Герцем электромагнитных волнах.

Ясно, что здесь мы сталкиваемся с качественно иной ситуацией. Попробуйте вообразить себе создание радиоприемника без предшествующих чисто научных исследований быстропеременных токов, без обнаружения особых волн, генерируемых колебательным контуром. И уж совсем мистическим актом воображения представляется, скажем, создание лазера без глубокого знания квантовой теории атомно-молекулярных систем.

Из этого вовсе не следует какое-либо преуменьшение роли поиска методом проб и ошибок. Между предсказанием большого выхода энергии в процессе деления ядра урана и созданием реального ядерного реактора — дистанция огромного размера. Но тут важна принципиальная сторона вопроса — без тщательного чисто научного анализа энергетики ядерных реакций, без теории «дефекта массы», основанной на эйнштейновской связи между энергией и массой, вряд ли мы были бы даже знакомы с такими словосочетаниями, как «ядерный реактор», «термоядерный реактор» и т. п.

Чисто рецептурная наука уходит в область преданий. Сегодня будущее наступает гораздо быстрей, чем в далекие времена. Аккумулировать опыт поколений в виде каких-то практических рецептов, попросту говоря, некогда — в тупике могут оказаться не столько далекие потомки, сколько ныне здравствующие люди. Наука XX века стала активно продуцировать «заготовки впрок». Исследования, направленные на выяснение механизма явления, порождают новые исследования — процесс становится лавинообразным. Получается так, что по большинству стоящих перед обществом проблем ученые способны либо немедленно сформулировать конкретные практические рекомендации, либо указать ясные пути их выработки. И в этом важнейший источник высокого престижа естественных наук.

Но, возможно, самое любопытное состоит в том, что взрыв исследовательской активности буквально на наших глазах сметает глубоко укоренившееся представление о самой науке как о непоколебимом своде фундаментальных законов природы, огромном храме — хранилище неоспоримой истины. Эти, в общем-то, славные образы — типичное наследие старых добрых «медленных» времен, когда по одним и тем же учебникам превосходили премудрость десятки и десятки студенческих поколений, а научные статьи не успевали безнадежно устаревать еще до выхода в свет; когда ученые были скорее жрецами-добровольцами, а не научными сотрудниками с годовыми, пятилетними и перспективными двадцатилетними планами работы.

Прорыв в мир частиц высоких энергий связан с формированием науки нового типа. Физика высоких энергий дала первый образец сверхбыстрого развития и в постановке основных задач, и в методах организации исследований. Этот блестящий взлет произошел в удивительно короткий срок благодаря счастливому сочетанию двух, быть может, важнейших человеческих качеств — неиссякаемой изобретательности и умения жертвовать сиюминутными интересами ради Будущего с большой буквы. Именно это и позволило перейти к созданию самых-самых (больших, сложных, дорогостоящих…) приборов для изучения микромира — ускорителей заряженных частиц.

К концу 20-х — началу 30-х годов, когда помыслами физиков все сильней и сильней стали овладевать элементарные частицы и атомные ядра, выяснилось, что для серьезного движения вперед нужно срочно менять оружие. «Даровые» радиоактивные источники, которые верой и правдой служили науке много лет, не обеспечивали новых экспериментальных потребностей. Во-первых, они давали частицы с энергией, строго регламентированной законами радиоактивного распада. Во-вторых, эта энергия была не особенно велика — в лучшем случае порядка 10 МэВ. Кроме того, по ряду соображений для исследования ядер было выгодно использовать не альфа-частицы, а протоны.

Перед тем как перейти на долгосрочную и плодотворную работу в химии, биологии, геофизике и других областях науки, буквально «под занавес» радиоактивные источники сыграли одну из лучших своих ролей. С их помощью в 1932 году Дж. Чэдвик открыл долгожданную нейтральную составляющую атомных ядер — нейтрон, предсказанную его учителем Э. Резерфордом. Это открытие завершило длинную серию работ по установлению природы странного излучения, которое возникало в результате бомбардировки бериллия альфа-частицами и обладало высокой проникающей способностью. Дж. Чэдвик доказал, что при захвате альфа-частицы ядром бериллия образуется ядро углерода и испускается нейтральная частица, которая входила в состав одного из сталкивающихся ядер.

Экспериментальное обнаружение нейтрона позволило разработать простейшую составную модель ядра, о которой мы уже упоминали, вызвать искусственное деление тяжелых ядер и, наконец, в 1942 году запустить первую действующую модель ядерного реактора. Именно в связи с этой впечатляющей цепочкой завоеваний 30-е годы стали скорее «ядерными», чем «элементарно-частичными». Если когда-нибудь благодарные физики-ядерщики пожелают поставить монумент в честь одного из объектов своих исследований, то, на мой взгляд, это должна быть модель ядра гелия — великой альфа-частицы. Еще бы! Открытие атомных ядер в резерфордовских экспериментах, расшифровка протон-нейтронной структуры ядра произошли с ее помощью. Альфа-радиоактивность открыла путь в ядерный мир!

В высшей степени символично, что 1932 год оказался моментом передачи эстафеты — блестящий нейтронный финиш радиоактивных источников и практически сразу же мощный позитронный старт космических лучей. Старт был действительно превосходным, но многоопытные тренеры уже понимали, какие дистанции доступны для космических бегунов, а какие нет.

Космические лучи представлялись идеальным инструментом исследований по двум соображениям: их получение не требовало ни малейших расходов, и они обладали фантастически широким спектром энергий. Зато работа с ними основывалась на не слишком приятном принципе «ждать у моря погоды» и требовала невероятного терпения. Космическая частица с нужной энергией могла попасть в регистрирующее устройство сегодня, завтра, через год. Предположим, что небеса все-таки «являли милость», но это было одно, два, от силы десяток-другой событий. Что с ними можно сделать? Можно увидеть следы «неведомых зверей» — открыть новые частицы, можно зафиксировать новый тип процессов; в общем, установить уникальные факты существования чего-либо. Но получить более детальную информацию о поведении той же самой вновь открытой частицы в различных реакциях и при различных энергиях оказывается чрезвычайно сложным и слишком длительным делом. Ведь необходимо набирать сотни тысяч событий. В этом плане космические лучи могли оказать лишь одну услугу — дать предварительный сигнал о каких-то новых закономерностях.

Именно такова их основная специальность в настоящее время; и надо отметить, что зарекомендовали они себя в этом деле с лучшей стороны. Если учесть, что сейчас в составе космических лучей зарегистрированы частицы с энергиями до 1021 электрон-вольт, а на ускорителях изучают реакции при энергиях частиц лишь до 1012 эВ, то становится ясно — им еще долго предстоит выполнять функции «стратегической разведки».

1 ... 17 18 19 20 21 22 23 24 25 ... 51 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название