-->

Необыкновенная жизнь обыкновенной капли

На нашем литературном портале можно бесплатно читать книгу Необыкновенная жизнь обыкновенной капли, Волынский Марк Семенович-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Необыкновенная жизнь обыкновенной капли
Название: Необыкновенная жизнь обыкновенной капли
Дата добавления: 16 январь 2020
Количество просмотров: 310
Читать онлайн

Необыкновенная жизнь обыкновенной капли читать книгу онлайн

Необыкновенная жизнь обыкновенной капли - читать бесплатно онлайн , автор Волынский Марк Семенович

Капля жидкости. Вот она сорвалась с кончика пипетки и летит вниз — какую форму она при этом принимает? Как происходит испарение неподвижной капли и капли, которая обдувается потоком воздуха? А как и почему вообще образуется капля? Ответы на эти простые, казалось бы, вопросы на самом деле не так просты. Капля всегда в движении, в динамике рождения и исчезновения: полет, колебание, распад, испарение и конденсация. Бесконечная цепь превращений, форм и размеров. Поэтому каплю можно назвать перекрестком, на котором сходятся интересы разных научных дисциплин — от гидродинамики до химии.

Для широкого круга читателей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 16 17 18 19 20 21 22 23 24 ... 36 ВПЕРЕД
Перейти на страницу:

 A = rcR / rвх2 n

- можно всегда вписать форсунку в самые разнообразные условия камеры сгорания по расходу топлива, углу рас­пыливания и дисперсности.

Возникло желание на опыте посмотреть эффект, скрытый внутри форсунки со сталкивающимися струя­ми. Установку соорудили почти моментально, подклю­чив к водопроводу трубку с Т-образным тройником, на концы которого надели резиновые трубочки с цилиндри­ческими наконечниками. Их закрепили в химических штативах, направив струи в горизонтальной плоскости друг на друга, под углом 90°. Мы чуть-чуть приоткрыли кран, давая минимальную скорость жидкости. Стеклянно-гладкие струи воды столкнулись в начальной зоне истечения. Ну чего, казалось, особенного можно было ожидать в месте соударения? Облака водяной пыли? Но нет конца изобретательности природы в мире капель и струй. И вот возникла совершенно необычная картина.

Потоки, столкнувшись, расплющились, став тонким прозрачным овалом, расположенным перпендикулярно плоскости осей по биссектрисе угла соударения. Пери­ферия овала очерчивалась жгутами изогнутых струй; часть жидкости была даже оттеснена вспять, оказав­шись позади зоны встречи (задняя вершина овала); граничные струи, обогнув пелену, снова столкнулись в передней вершине овала, и опять под прямым углом; Картина соударения повторилась вторым, меньшим ова­лом уже в горизонтальной плоскости (струи теперь сталкивались в вертикальной плоскости). Так, по зако­ну цепной реакции, нанизываясь друг на друга, протя­нулась витая гирлянда жидких постепенно уменьшаю­щихся овалов—теоретический анализ показал, что это эллипсы. В такой форме явление развивалось при очень малых скоростях истечения, когда силы поверхностного натяжения жидкости сравнимы с аэродинамическими — скоростным напором ρv2/2.По мере открывания крана и роста скорости жидкости число овалов уменьшается, пока не начинается распад сразу после первого овала. Конечно, жидкая пелена неустойчива и при медленном течении, и на каком-то звене возникает распыливание, но скорость роста амплитуды волн неустойчивости ока­зывается меньше скорости движения жидкости, и ей удается на время «убежать» от распада.

Мы провели опыт и со встречными струями, получив в поперечной плоскости большой жидкий «блин», рас­текшийся в тонкую пелену поперек струй. Аналогичная картина растекания (но без распада) наблюдалась при ударе струи под прямым углом . о плоскость экрана. Вдруг где-то на большом радиусе мы увидели ступень­ку кольцевого валика. Ну конечно, это наш старый зна­комый — гидравлический прыжок, он должен был воз­никнуть! Действительно, по мере радиального растека­ния пелена все утоньшалась, а, следовательно, при определенной малой толщине пелены h должно было удовлетвориться уже известное нам математическое условие прыжка

 v =gh 

И он (законы природы безот­казны) не замедлил возникнуть.

 * * *

Тем временем шло становление и развитие реактивной техники, увенчавшееся блестящими успехами космиче­ских запусков. У нас и за рубежом продолжалось ин­тенсивное исследование, рабочего процесса камер сгора­ния. «Строительные» работы велись сразу на несколь­ких этажах далеко не завершенного здания. В деловых буднях, на совещаниях и обсуждениях люди с интере­сом и некоторым удивлением наблюдали, как единое научно-техническое древо на глазах выбрасывает побе­ги отдельных проблем и направлений. Уже появились специалисты по форсункам и распыливанию — «смесеобразователи»; по организации процесса горения в потоках больших скоростей — «горелыцики». Кто-то вспомнил старую шутку о врачах — специалистах по правому и левому уху. Но жизнь, практика на самом деле требовали специализации и неизбежно разводили пути-дороги исследователей. Такое расслоение происхо­дило и в среде зарубежных ученых, с которыми посте­пенно налаживались контакты. Уровень работ наших авторов по распыливанию и горению был достаточно высок, и они все чаще публиковались и цитировались в иностранной литературе. Один из наших аспирантов по­лучил из Англии ( в те годы это было в новинку) пи­сьмо-отклик на свои новаторские статьи по турбулент­ному горению. На конверте значилось: «А. Г. Прудни­кову— эсквайру» (помимо любезного обращения, титул имел еще первоначальное, старое значение — землевла­делец, дворянин). Сейчас уважаемый доктор техниче­ских наук проживает в благоустроенной квартире и вряд ли вспоминает эпизод прошлого. А тогда наш «эсквайр» с семьей ютился в тесной комнатке (с жиль­ем было туговато), и, пожелай автор письма посетить коллегу в один из приездов на научную конференцию, возникла бы неловкость.

Параллельно с исследованием процессов рождения капли из струй начались поиски закономерностей после­дующих фаз ее краткого, но многообразного существо­вания — испарения и горения. Измерение времени жиз­ни капли требовалось для расчета камеры сгорания не только двигателей, но и промышленных топок, котель­ных установок тепловых электростанций, различных энергоблоков и т. д.

Мы интенсивно искали методику эксперимента. В технической задаче такого рода открывались два раз­личных пути. Рассматривать явление как оно есть, в условиях, близких к реальным,— факел распыливания в камере с потоком нагретого воздуха — и искать эмпи­рическую зависимость степени испарения, растущей до­ли испаренного вещества по длине. Или выделить одну-единственную каплю из всего роя и изучать механизм процесса в более простом и ясном проявлении с надеж­дой на дальнейшие обобщения. Первый путь сулил, ка­залось, реальные и сравнительно быстрые результаты — виделся несложный эксперимент: улавливать жидкость гребенкой отбора — шеренгой согнутых Г-образных тру­бочек, пользуясь осевой симметрией потока. Правда, самые мелкие капли могли облетать трубочки. Но в спектре распыливания некоторых форсунок доля таких капель была невелика, и расчеты позволяли вносить поправку. Вычисляя разницу расхода из форсунки я массы отобранной жидкости, оказалось возможным по­строить кривую роста степени испарения. Вскоре мы по­лучили целый «чемодан кривых», как говорила техник Раиса, прилежно строившая все эти графики. Но ника­кой закономерности подметить не удавалось. Обобщение в виде эмпирической формулы не получалось — ум, как и глаз, не мог сразу охватить сложное многообразие летящих и испаряющихся капель. Мы, правда, получи­ли при этом некоторое представление о реальных интер­валах и скоростях испарения, что для начала тоже оказалось ценным.

Оставался второй путь. Одиночная неподвижная кап­ля должна была послужить простейшей моделью, на ко­торой можно было подсмотреть действие закона испаре­ния и описать его математически. Это открывало путь к возможному обобщению. Некоторые экспериментато­ры вообще начинали с «железных капель». На поверх­ность металлического шара через мелкие поры подавал­ся тонкий слой жидкости — поддерживалась неизмен­ная толщина испаряющейся пленки, что соответствова­ло стационарным условиям опыта. По расходу жидкости судили о скорости испарения.

Более близкими к реальному процессу выглядели экс­перименты с каплями диаметром два—три миллиметра, подвешенными на проволочку термопары — прибора, из­меряющего температуру жидкости. Каплю заключали в ящик — термостат с определенной температурой. Он имел окна, иногда кварцевые. В случаях высоконагре­той среды или опытов с горением капли киноаппарат фиксировал ее меняющиеся размеры. Шаровая симмет­рия явления, казалось бы, позволяла составить уравне­ние процесса, математически решить задачу и сопоста­вить результат с данными опыта. Но не тут-то было — природа вмешалась в идеальные схемы. Капля окутыва­лась направленным вертикальным языком паров или продуктов сгорания. Они всплывали в окружающей среде, поскольку отличались от нее по удельному весу — явление естественной конвекции, обусловленное подъем­ной силой Архимеда. Модель шаровой симметрии лома­лась, получался некий искусственный обдув, то, что на­зывается «нечистый опыт».

1 ... 16 17 18 19 20 21 22 23 24 ... 36 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название