Свет в море
Свет в море читать книгу онлайн
Книга посвящена одному из сложных и интересных разделов науки — гидрооптике которая изучает проникновение и распространение света в море.
В настоящее время знать физические законы, определяющие эти процессы, особенно необходимо в связи с решением такой важной и актуальной проблемы, как освоение ресурсов Мирового океана.
Человек начал наступление на водную целину. Но для успешного его завершения следует разобраться в массе трудных вопросов гидрооптики.
Чем объясняется цвет моря и почему разные моря имеют разный цвет? От чего зависит прозрачность морской воды и несколько глубоко проникает свет в океанские глубины? Почему море светится? Ответы на все эти вопросы и дает настоящая книга.
Она написана легко, физическая сущность процессов объяснена весьма доступно. Издание рассчитано на широкие круги читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Из зарубежных исследователей-гидрооптиков, работавших в 30—40-е годы, необходимо назвать имена И. Ле Грана и Г. Петтерссона. Французский ученый И. Ле Гран опубликовал несколько интересных работ, посвященных теории распространения света в море; швед Петтеросон — создатель многих гидрооптических приборов — один из первых начал проводить оптические исследования, погружая аппаратуру непосредственно в море.
Гидрооптика как наука принадлежит одному из разделов физики — оптике светорассеивающих сред (сюда же относится и оптика атмосферы). Поэтому для развития гидрооптики очень большое значение имели общетеоретические работы В. А. Амбарцумяна, В. В. Соболева, С. Чандрасекара, Г. В. Розенберга, Р. Прайзендорфера, К. С. Шифрина и Ван де Хюлста. Развитые ими методы исследования распространения излучения в светорассеивающих средах имеют прямое отношение к морю.
Уже говорилось об основном уравнении теории мутных сред — уравнении переноса излучения. Его решение позволяет получить интересующую нас информацию о световом поле в море в зависимости от условий освещения и оптических свойств морской воды в данном районе. Беда, однако, в том, что полного решения уравнения применительно к морю до сих пор еще нет. Математических трудностей, с которыми оно сопряжено, не удалось преодолеть даже с появлением электронно-вычислительных машин. Большинство современных гидро-оптических исследований основывается на результатах экспериментальных работ, которые кладутся затем в основу теоретических построений.
Особенно широкое распространение экспериментальные оптические исследования непосредственно в море получили в послевоенные годы.
В 1947–1948 гг. во время кругосветного рейса шведского научно-исследовательского корабля «Альбатрос» Н. Ерлов выполнил комплексные измерения в Атлантическом, Тихом и Индийском океанах. На их основе он разработал первую оптическую классификацию морских и океанских вод.
В нашей стране также широко развернулись исследования оптических свойств вод морей и океанов. В 1948–1951 гг. М. В. Козлянинов проводил обширные оптические измерения в морях, омывающих берега Советского Союза.
С вступлением в строй научно-исследовательского корабля «Витязь» в 1949 г. Институт океанологии им. П. П. Ширшова АН СССР (ИОАН) начал регулярные оптические измерения в дальневосточных морях и в Тихом океане. В это же время под руководством А. А. Гершуна и В. Б. Вейнберга в Государственном оптическом институте им. С. И. Вавилова разрабатывались новые гидрооптические приборы.
Значительно расширило наши знания об оптических свойствах вод открытых океанских акваторий проведение Международного геофизического года и Международного геофизического сотрудничества в 1957–1959 гг. В период подготовки к этим международным исследованиям в Советском Союзе был создан первый комплект аппаратуры, предназначенный для массовых измерений оптических характеристик морей и океанов, — фотоэлектрический прозрачномер ФПМ-57, измеритель подводной освещенности ФМПО-57, спектрогидронефелометр — прозрачномер СГН-57 и гидрофотометр ФМ-46.
В эти годы интенсивно развивается раздел гидрооптики, который можно назвать оптической океанологией. Задачи оптической океанологии — изучение географического распределения и сезонной изменчивости оптических свойств вод Мирового океана и выявление связей между оптическими характеристиками, с одной стороны, и гидрологическими, биологическими и геологическими факторами — с другой.
В становлении оптической океанологии заметную роль сыграли работы И. Йозефа. На экспериментальном материале, полученном главным образом в проливах, соединяющих Северное и Балтийское моря, он показал, что между некоторыми оптическими характеристиками и гидрологическими условиями существует определенная зависимость и что различным водным массам присущи достаточно четкие оптические признаки.
В Тихом океане, кроме шведского «Альбатроса», гидрооптические измерения проводили японские, американские и австралийские исследователи.
Большой вклад в изучение оптических свойств Мирового океана внесли советские исследователи. «Витязь» в Тихом и Индийском океанах, «Михаил Ломоносов» в Атлантическом океане, «Обь» в приантарктических водах, «Академик С. Вавилов» в Средиземном и Красном морях покрыли довольно густой сетью гидрооптических станций обширнейшие акватории. На рис. 1 представлена карта Мирового океана с гидрооптическими станциями (из них почти 75 % принадлежит советским экспедициям).
Одновременно с экспедиционными работами ведутся экспериментальные и теоретические исследования светового поля, создаваемого естественными и искусственными источниками; изучаются условия видимости под водой (большая заслуга в этом принадлежит американским ученым Дантли, Тайлеру и Прайзендорферу).
Французский гидрооптик А. А. Иванов большое внимание уделяет поляризации естественного света, видимости под водой и оптическим свойствам морских вод. Широкую известность приобрели работы Ж. Ленобль. Несомненно интересны изыскания А. Мореля, изучающего процессы рассеяния в море.
Наряду с измерениями непосредственно в море широко развиваются исследования на искусственных средах, моделирующих оптические свойства морских вод. Работы, проведенные В. А. Тимофеевой в Морском гидрофизическом институте АН УССР и А. П. Ивановым в Институте физики АН БССР, позволили исследовать в лабораторных условиях многие закономерности распространения света в океане.
Оптика моря — органическая часть большого комплекса наук, изучающих физические свойства вод Мирового океана. Ее успехи неразрывно связаны с развитием океанологии в целом.

Поглощение и рассеяние света в морской воде
Вряд ли кого удивит тот факт, что дневной свет, распространяясь в толще моря, ослабевает с глубиной. А вот почему это происходит? На этот вопрос, вероятно, ответит далеко не каждый.
Каким образом вода «борется» с лучом света, пытающимся проникнуть в ее толщу? В чем заключается физический смысл процесса ослабления света водой?
Чтобы детально разобраться в этом, надо познакомиться с двумя процессами, взаимное воздействие которых на свет и приводит к его ослаблению в воде. Одним из этих процессов является поглощение, а вторым — рассеяние.
Свет превращается в тепло
Поглощаясь, световая энергия переходит в другие виды энергии, в частности в тепловую. Кажется, все ясно. Но стоит на мгновение задуматься — и сейчас же возникают вопросы: почему световая энергия поглощается морем, каков механизм этого процесса, каким образом свет превращается в тепло? И вот здесь-то мы и попадаем в дебри атомной физики. Чтобы ответить на возникшие вопросы, надо от понятия «свет» перейти к понятию «квант энергии», а от толщи моря — к молекуле воды.
В 1900 г. немецкий физик М. Планк создал квантовую теорию излучения света. Эта теория получила свое дальнейшее развитие в работах А. Эйнштейна, который доказал, что излучение, распространение и поглощение света происходит в виде отдельных порций света — квантов, т. е. своеобразных частиц световой энергии, впоследствии получивших наименование «фотоны» (от греческого слова photos — свет). Чем же они характеризуются?
Фотону присущи многие свойства материальной частицы. Так, он обладает энергией, количеством движения (импульсом) и массой, которые можно определить следующим образом: энергия W = hv; импульс p = hv/c; масса m = hv/c2, где h — постоянная Планка (6,6∙10-34 дж∙сек); с — скорость света в вакууме (3∙108 м∙сек-1); v — частота, с которой фотон был излучен, определяемая из соотношения v = c/λ сек-1, где λ — длина волны света.
Но все же фотон не материальная частица. Все дело в том, что его масса — это масса движения. Масса покоя фотона равна нулю. Другими словами, фотон существует, пока он движется.
