Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной
Чудеса обычных вещей. Что обыденная жизнь рассказывает нам о большой Вселенной читать книгу онлайн
Маркус Чоун — британский ученый, журналист и писатель, один из лучших популяризаторов науки сегодняшнего дня. Мало кто умеет так, как он — просто, доходчиво, с легким юмором, — рассказать о сложнейших научных представлениях, будь то принципы квантовой механики или космологические концепции.
В своей новой книге «Чудеса обычных вещей» Маркус Чоун демонстрирует удивительный, обманчиво простой принцип знакомства с миром современной физики: он берет самые обычные вещи и явления и заставляет их рассказывать о тайнах мироздания, о загадках микро- и макромира.
Под пером Маркуса Чоуна обыкновенное оконное стекло повествует о вероятностях, управляющих Вселенной. Капелька крови на пальце, оставшаяся после укола, делится впечатлениями о процессах, происходящих в глубинах звезд. А заурядная электрическая лампочка и доски пола под ногами превращаются в парадоксальные, загадочные предметы, которые, оказывается, в принципе не должны существовать!
Маркус Чоун (р. 1959) — в прошлом радиоастроном, успешно работавший в Калифорнийском технологическом институте; ныне — постоянный автор журнала «Нью сайентист», теле- и радиоведущий, популяризатор науки.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Маркус Чоун Лондон Февраль 2009 г.
Часть 1
Что повседневная реальность рассказывает нам об атомах
1. Лицо в окне
Когда вы стоите перед окном, самое потрясающее открытие в истории науки — то, что все происходящее в конечном счете не имеет никакой причины, — буквально таращится на вас
Всякая трудность есть свет. Трудность непреодолимая — солнце.
Нет прогресса без парадокса.
Поздний вечер. Идет дождь. Вы мечтательно смотрите из окна на огни большого города. Сквозь сбегающие струйки воды вы видите проезжающие по улице машины и собственное размытое отражение. Хотите верьте, хотите нет, но это простое наблюдение сообщает вам нечто очень важное — потрясающе важное! — о фундаментальных основах окружающей вас реальности. Оно говорит о том, что Вселенная — на глубинном уровне — случайна и непредсказуема, как небрежный бросок игральных костей; о том, что все, происходящее в этом мире, не имеет на то никакой причины.
Причина того, что вы видите городские огни за окном и одновременно с этим легкое отображение собственного лица, взирающего на вас, заключается в том, что сквозь стекло проходит 95 процентов света, а 5 процентов — отражаются. Это легко понять, если представить свет в виде волн, подобных ряби на воде, — уж рябь-то всякий видел. Вообразите себе несущийся по озеру катер. От носа катера разбегаются волны. На их пути встречается подтопленное бревно. Большинство волн побегут дальше, словно не встретив никакого препятствия, но малая часть откатится назад. Так и со светом: большая часть волн проникнет сквозь окно, а меньшая — отразится.
Это очень простое объяснение того, почему вы видите в оконном стекле свою собственную персону. Оно явно не подразумевает ничего такого, что имело бы отношение к фундаментальным основам реальности. Однако впечатление обманчиво. Свет — совсем не то, что нам кажется. У него в запасе имеется хитрость, которая опрокидывает эту простую картинку и ставит все с ног на голову. В двадцатом веке физики обнаружили ряд эффектов, из которых следовало, что свет распространяется не как рябь по воде, а как поток частиц, летящих подобно пулям. Взять хотя бы эффект Комптона, выявивший нечто странное в том, как свет отскакивает от электрона — или, иначе говоря, «рассеивается» на нем. Электрон был открыт в 1897 году кембриджским физиком Джозефом Джоном («Джей-Джей») Томсоном. Эта крохотная частица оказалась намного меньше атома и, по сути, представляла собой его ключевую составляющую.
В 1920 году американский физик Артур Комптон решил разобраться, что же происходит со светом, когда он попадает на электрон. Комптон исходил из того, что световая волна должна отскакивать от электрона, подобно тому как волна на реке отражается от буйка. Если вы это видели, то знаете, что в этом случае размер волны — или ее «длина» — остается неизменным. Иными словами, расстояние между соседними гребнями одно и то же как для набежавшей волны, так и для отраженной.
Однако в эксперименте Комптона все было совсем не так. После того как световая волна отражалась от электрона, ее длина увеличивалась. И чем сильнее изменялось направление движения света в результате столкновения, тем больше менялась длина волны. Получалось, что простой «отскок» волны от электрона волшебным образом превращал голубой свет, характеризующийся короткой длиной волны, в красный, у которого длина волны больше [5]. Выходит, длинные — «вялые» — волны обладают меньшей энергией, чем короткие — «буйные». Эксперимент словно бы говорил Комптону: когда свет «отскакивает» от электрона, он каким-то образом теряет энергию.
Комптон мысленно рисовал картины того, что происходит со светом и электроном, и эти картины были абсолютно противоестественные. Свет в его опытах вел себя как угодно, но только не так, как ведет себя волна, отразившаяся от буйка. Чем больше Комптон думал об этом, тем больше осознавал, что свет ведет себя как бильярдный шар, столкнувшийся с другим бильярдным шаром. Когда по шару ударяет биток, шар отскакивает, унося с собой некоторую часть энергии битка. При этом биток неизбежно теряет энергию. В те времена считалось, что электроны похожи на крохотные бильярдные шары, а свет — это нечто вроде ряби, распространяющейся в пространстве, подобно тому как волны бегут по воде. Однако опыты Комптона говорили ясно и четко: вопреки свидетельствам, копившимся столетиями, свет тоже должен состоять из частичек, похожих на крошечные бильярдные шары. За свою революционную работу, установившую корпускулярно-волновую природу света, Комптон в 1927 году получил Нобелевскую премию по физике.
Еще одно доказательство того, что свет ведет себя, как поток частиц, — это фотоэффект, знакомый каждому, кто видит, как двери в супермаркете, если к ним приблизиться, расступаются, словно воды Красного моря перед Моисеем. Двери расходятся по той причине, что нога входящего пересекает луч света. Этот луч постоянно освещает фотоэлемент — устройство, в котором содержится некий металл, способный с легкостью разбрызгивать вокруг электроны, когда на него попадает свет. Это происходит потому, что в таком металле электроны не так уж крепко держатся за свои атомы и энергии света оказывается достаточно, чтобы они пустились в свободный полет. Когда какой-то предмет перекрывает луч света, фотоэлемент оказывается в тени, и атомы перестают брызгать электронами. Система налажена таким образом, что, стоит потоку электронов прерваться, дверь открывается.
Но какое же отношение имеет фотоэффект к корпускулярной природе света? Если свет — это волна, то практически невозможно объяснить, как она может эффективным образом сообщать энергию крохотным, локализованным в пространстве электронам. Типичная световая волна, бегущая от источника излучения, должна взаимодействовать с большим количеством электронов, распределенных по поверхности металла. Неизбежно одни электроны будут «выбиты» позднее, чем другие. В сущности, вычисления показывают, что некоторые электроны покинут свои орбиты аж через десять минут после первых. Вообразите, что поток частиц формируется в фотоэлементе столько времени! Это означает, что посетители супермаркета будут десять минут толпиться перед закрытыми дверями.
Однако все обретает смысл, если представить, что свет состоит из крошечных частиц и каждая взаимодействует с конкретным электроном в металле. Вместо того чтобы постепенно распределять свою энергию среди большого количества электронов, свет, представленный этими частицами — «фотонами», — наносит точечные удары. Каждый фотон не только выбивает один электрон, но делает это сразу, а не после десятиминутной паузы. Именно благодаря корпускулярной природе света вы попадаете в супермаркет без всяких задержек.
Эйнштейн именно так и объяснил фотоэффект: как работу крошечных порций — «квантов» — света. За это он был удостоен Нобелевской премии по физике 1921 года. Многие нашли это странным. Они удивлялись, почему Эйнштейн не получил премию за свою «относительность» — теорию, которая сделала его знаменитым и навсегда изменила наши представления о пространстве и времени. Сам Эйнштейн, однако, считал «относительность» естественным и даже не слишком выдающимся продуктом физики XIX века [6]. А в «кванте», стоящем особняком среди его достижений, он видел единственную по-настоящему революционную идею своей жизни.
Эйнштейн опубликовал работу о существовании квантов в тот же «год чудес» — 1905-й, — когда он познакомил мир и со своей теорией относительности. Пятью годами раньше, в 1900 году, немецкий физик Макс Планк нашел способ объяснить загадку жара, исходящего от печи, предположив, что атомы могут колебаться («вибрировать») только на определенных — «разрешенных» — уровнях энергии и эти уровни в количественном смысле должны быть кратны какой-то базисной порции энергии — кванту. Сам Планк полагал эти кванты не более чем математическим трюком, не имеющим особого физического смысла. Эйнштейн оказался первым, кто увидел в квантах физическую реальность: они были летящим сквозь пространство потоком фотонов в луче света.