-->

Вселенная погибнет от холода. Больцман. Термодинамика и энтропия.

На нашем литературном портале можно бесплатно читать книгу Вселенная погибнет от холода. Больцман. Термодинамика и энтропия., Перез Эдуародо Арройо-- . Жанр: Физика / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Вселенная погибнет от холода. Больцман. Термодинамика и энтропия.
Название: Вселенная погибнет от холода. Больцман. Термодинамика и энтропия.
Дата добавления: 16 январь 2020
Количество просмотров: 212
Читать онлайн

Вселенная погибнет от холода. Больцман. Термодинамика и энтропия. читать книгу онлайн

Вселенная погибнет от холода. Больцман. Термодинамика и энтропия. - читать бесплатно онлайн , автор Перез Эдуародо Арройо

Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 14 15 16 17 18 19 20 21 22 ... 33 ВПЕРЕД
Перейти на страницу:
ВЕРОЯТНОСТЬ И ПЕРЕСТАНОВКИ

Вычисление вероятностей в теории Больцмана, по крайней мере для небольшого числа сочетаний, можно понять с помощью элементарной математики. Оно основано на так называемой "факториальной функции", которая обозначается восклицательным знаком и определяется так:

n! = n · (n - 1) · (n - 2) · (n - 3) · (...) · 1,

где л — любое число. То есть 3! равно 3 · 2 · 1 = 6, а 5! равно 5 · 4 · 3 · 2 х х 1 = 120. Предположим, у нас есть множество из л цветных шаров. Мы хотим узнать число возможных уникальных сочетаний. Начнем с небольшого числа шаров, а затем усложним ситуацию, добавив еще. При трех шарах красного (К), синего (С) и черного (Ч) цветов различные возможные сочетания, полученные методом проб и ошибок, следующие:

КСЧ, КЧС, СКЧ, СЧК, ЧКС, ЧСК.

Эти шесть сочетаний можно получить более элегантным способом. Если рассматривать первое положение, можно выбирать из трех шаров, во втором положении остается два варианта, а в третьем — один. Количество вариантов равно 3-21 = 6. Для случая с n разноцветных шаров этот метод легко расширить. Для первого положения у нас л вариантов, для второго остается (n - 1) и так далее. Конечное выражение следующее:

n · (n - 1) · (n - 2) · (n - 3) · (...) · 1 = n!,

то есть ранее определенная факториальная функция. Однако это выражение несправедливо, если разные шары обладают одним и тем же цветом. В этом случае многие сочетания окажутся равнозначными, поскольку не будет способа различить одинаковые шары. Для этого нужно разделить все возможные сочетания между шарами одного и того же цвета; то есть сначала берутся все возможные сочетания, если бы шары были различимы, а затем исключаются те, к которым это предположение неприменимо. Если существует nА шаров цвета 1, n2 цвета 2 и так далее до цвета р, то общее число сочетаний окажется:

р = n!/(n1! · n2! · n3!...nр!).

Это та же самая формула, которая используется для множества молекул, где число частиц равно n, а различные возможные состояния энергии идут от 1 до р. Применяемое рассуждение точно такое же, и именно им воспользовался Больцман в своей статье 1877 года для вычисления числа комплексий, совместимых с некоторым распределением.

11. 0001222 140
12. 0011113 105
13. 0011122 210
14. 0111112 42
15. 1111111 1

Вероятность каждого состояния можно вычислить, разделив число совместимых с ним комплексий на общее число комплексий. Этот относительно простой расчет давал представление о том, что Больцман осуществил позже, хотя и в намного более сложном с математической точки зрения виде. Далее он получил общее выражение для числа перестановок распределения, на этот раз предположив, что число молекул, во-первых, очень велико, а во-вторых, что энергия принимает непрерывные значения. Наконец, он ввел выражение "степень перестанавливаемости", которое определил как логарифм числа перестановок.

Произведя расчеты, Больцман выяснил, что выражение степени перестанавливаемости равно величине H из его предыдущей статьи с измененным знаком; это было важно, поскольку величина Я равна энтропии со знаком минус. Итак, степень перестанавливаемости могла быть использована как мера энтропии системы. Больцман, должно быть, осознавал важность своего результата, поскольку в заключение подчеркивал:

"Хорошо известно, что когда система тел подвергается чисто обратимой трансформации, общая энтропия остается постоянной. Если, наоборот, среди трансформаций, которым подвергается система, есть хоть одна необратимая, энтропия может только увеличиваться [...]. Что касается предыдущего отношения, то же самое справедливо для [...] меры перестанавливаемости для множества тел. Эта мера перестанавливаемости, следовательно, является величиной, которая, находясь в состоянии термодинамического равновесия, совпадает с энтропией [...], но она также имеет значение в необратимых процессах, где она постоянно увеличивается".

ДЖОЗАЙЯ УИЛЛАРД ГИББС

Американский физик Джозайя Уиллард Гиббс внес значительный вклад как в химию, так и в физику и ввел термин "статистическая физика". Это был скромный гений со склонностью к отшельничеству: ббльшую часть жизни он прожил в доме своей сестры и, унаследовав немалое состояние своего отца, на добровольных началах преподавал в Йельском университете. Гиббс провел небольшой период времени в Европе, не упустив возможность посетить лекции Кирхгофа и Гельмгольца среди прочих. Позже, несмотря на то что он почти не выезжал из своего родного города, он вел переписку с другими физиками, особенно с Максвеллом, который был в восторге от его работы. Эйнштейн даже говорил, что Гиббс — "самый блестящий ум в истории Америки".

Вселенная погибнет от холода. Больцман. Термодинамика и энтропия. - img_26.jpg

Больцман не только идентифицировал степень перестанавливаемости с энтропией, но и указывал на то, что его видение последней может быть распространено на любое вещество, одноатомное или многоатомное, жидкое или твердое. Действительно, физик пришел к выводу:

"Возьмем любую систему, которая подвергается произвольной трансформации, при этом конечные и начальные состояния — необязательно состояния равновесия; в этих условиях мера перестанавливаемости множества тел системы будет постоянно расти в ходе процесса и в лучшем случае будет постоянной в обратимых процессах, которые находятся бесконечно близко к термодинамическому равновесию".

ПРИНЦИП БОЛЬЦМАНА

Эйнштейн ввел термин "принцип Больцмана" для обозначения формулы, которая в итоге была выгравирована на могиле австрийца:

S = k logW.

Несмотря на то что Больцман демонстративно не привел ее в своей статье 1877 года, эту формулу легко вывести простым методом группировки различных констант. В ней S представляет энтропию, к — постоянную Больцмана, которая равна 1,38 · 10-23 Дж/К и которой Больцман никогда не пользовался, a W— число микросостояний (микроскопических конфигураций), совместимых с наблюдаемым макросостоянием (макроскопической конфигурацией). W также иногда толкуется как вероятность макросостояния, поскольку она прямо пропорциональна числу микросостояний. Из этого уравнения видно, как энтропия S увеличивается, по мере того как IV тоже увеличивается. Чем больше микросостояний, тем больше беспорядок; чем больше беспорядок, тем больше энтропия. Кроме того, только для одного возможного микросостояния энтропия математически равна нулю.

СОВРЕМЕННОЕ ПОНЯТИЕ ЭНТРОПИИ

Несмотря на то что терминология, используемая в статье 1877 года, сегодня несколько устарела, в тексте уже встречается понятие энтропии в том виде, в каком она понимается сегодня. В работе Больцмана она определяется как две трети меры перестанавливаемости; в современном понимании этот коэффициент в две трети включен в то, что стали называть "постоянной Больцмана", хотя сам ученый никогда этим термином не пользовался.

1 ... 14 15 16 17 18 19 20 21 22 ... 33 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название