На волне Вселенной. Шрёдингер. Квантовые парадоксы

На нашем литературном портале можно бесплатно читать книгу На волне Вселенной. Шрёдингер. Квантовые парадоксы, Ласерна Довид Бланко-- . Жанр: Физика / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
На волне Вселенной. Шрёдингер. Квантовые парадоксы
Название: На волне Вселенной. Шрёдингер. Квантовые парадоксы
Дата добавления: 16 январь 2020
Количество просмотров: 402
Читать онлайн

На волне Вселенной. Шрёдингер. Квантовые парадоксы читать книгу онлайн

На волне Вселенной. Шрёдингер. Квантовые парадоксы - читать бесплатно онлайн , автор Ласерна Довид Бланко
Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе. Прим. OCR: Врезки текста выделены жирным шрифтом. Символ "корень квадратный" заменен в тексте SQRT().

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 13 14 15 16 17 18 19 20 21 ... 33 ВПЕРЕД
Перейти на страницу:

Пришло время вернуться к выражению:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_68.png

где m — масса электрона и Е — энергия системы. Функция ψ связана с информацией относительно расположения электрона таким способом, который пока еще нельзя объяснить. Функция V(x) представляет любое воздействие Вселенной на электрон. Когда она равна нулю, предполагают, что электрон является свободным, но как только электрон приближается к ядру и оказывается связанным с атомом, функция V(x) перестает быть равной нулю и подчиняется электрическому присутствию протонов:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_69.png

где Z — число протонов, идентифицирующее атом. Мы располагаем ядро в начале координат (х = 0) таким образом, что переменная х также означает расстояние, отделяющее нас от ядра. Введем это выражение в уравнение Шрёдингера:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_70.png

Мы можем рассматривать V(x) как произведение постоянной (соединяющей Кc, Z и е²) и функции расположения 1/х:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_71.png

где функция 1/х принимает вид как на рисунке 14 (стр. 89), на котором мы видим, что функция 1/х стремится к бесконечности при х = 0 и убывает до исчезновения, когда х становится очень большим числом.

Свободный электрон

Когда функция У исчезает, электрон становится свободным, и уравнение Шрёдингера сокращается до своей самой простой формы:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_72.jpg

Это очень похоже на уже рассмотренное первое дифференциальное уравнение:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_73.jpg

Из этого мы делаем вывод, что касательная у пропорциональна значению функции в каждой точке. Именно сейчас проявляется динамика изменения касательной функции ψ. Отметим, что при повышенном значении для Е (электрон с высокой энергией) вторая производная будет больше постоянной ψ. Мы окажемся в ситуации сжатой волны с малой длиной (см. рисунок 11, стр. 80). Если мы возьмем выражение де Бройля λ = h/p, то малая λ соответствует большой р (то есть повышенной скорости р = mv). И наоборот, малая Е приводит нас к случаю вытянутой волны, с большой длиной и, таким образом, низкой скоростью: электрон с низкой энергией. В уравнении (1) электрон, не испытывая никакого влияния окружающей среды, находится в состоянии, похожем на состояние свободной струны, и его частота постоянна. К тому же форма ψ очень похожа на волну, распространяющуюся в свободном пространстве. Энергия частицы также не является квантованной и предполагает бесконечный спектр значений.

График кривой показывает, что V оказывается принципиальным в уравнении, когда значение х мало (когда электрон блуждает около ядра). Если мы разделим число на другое, намного меньшее, чем единица, то получим в качестве результата большое число. Чем сильнее уменьшается знаменатель, тем больше становится коэффициент. Например:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_74.jpg
На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_75.jpg

И наоборот, если х увеличивается, коэффициент

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_76.jpg

уменьшается, пока не станет незначительным. Эти две тенденции показывают, что электрон подвержен воздействию притяжения, когда он находится поблизости от ядра (где V сильно увеличивается). И его присутствие едва заметно, когда он очень далеко (V уменьшается, пока не исчезнет). В последнем случае, когда V стремится к нулю, уравнение сокращается до того вида, который соответствует свободному электрону (рисунок 15).

Мы предполагаем, что в любой момент ядро находится в состоянии покоя (или что можно не обращать внимания на его скорость, как и на скорость электронов).

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_77.jpg

РИС. 14

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_78.jpg

РИС. 15

Действие V, связывающее электроны с ядром, равносильно тому, чтобы зафиксировать струну на подставке скрипки.

Так как функция а(х,t) должна быть равна нулю на концах или соответствовать форме струны до касания, существуют дополнительные условия к ψ. Она должна быть постоянной и ее значение должно стремиться к нулю при нахождении далеко от ядра. Настоящее значение этих условий будет раскрыто в следующей главе. В тот момент, когда условия будут выполнены, энергия системы будет квантована согласно формуле Бора. Функции решения ψ ведут себя так же, как стоячие волны, создавая в атоме стабильную ситуацию.

Главная загадка уравнения Шрёдингера (которая будет решена в следующей главе) — какая физическая величина представляет знаменитую функцию ψ? Этот вопрос вызвал бурные споры с того самого момента, когда он был поставлен.

Наглядность функции Ψ

Чтобы описать реальный атом водорода, необходимо ввести три координаты:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_79.jpg

В трех измерениях анализ уравнения усложняется. Очевидно, чтобы визуализировать решения, необходимы четыре оси: одна — для ψ и три другие — для х, у и z. И если мы введем время t, то нам понадобится пятая ось. Но несмотря на эти сложности, можно сделать несколько замечаний относительно вида искомого решения. Например, проясняя (1), мы замечаем, что сумма динамики изменения касательных ψ

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_80.jpg

которую мы назовем Rизменения, равна:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_81.jpg

Переобозначим постоянные для большей ясности:

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_82.jpg

Когда мы удаляемся от начала координат (х, у и z, большие), SQRT(x² + у² + z²) приобретает намного большее значение, чем b, и коэффициент уменьшается до тех пор, пока не исчезнет. Таким образом, из уравнения следует:

Rизменения =3Ψ.

Принимая во внимание, что одно из условий, поставленных функции ψ, было таким, чтобы она стремилась к нулю при удалении от ядра, произведение постоянной а через ψ в равной степени будет тяготеть к нулю. Тогда последнее уравнение показывает, что сумма динамики изменения трех касательных стремится к нулю с ростом расстояния: Rизменения -> О· Кажется разумным предположить, что они изменятся по отдельности. Если бы это было так, у них была бы возможность соединиться, чтобы исчезнуть при сложении. Вдалеке от протонов ψ исчезает, и касательные принимают горизонтальное положение. И наоборот, когда электрон находится рядом с ядром, где значения переменных х, у и z, малы, сумма динамики изменения касательных будет выше. Это поведение обязано тому факту, что при Rизменения выражение

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_83.jpg

стремительно растет и превышает постоянную а. На кривой функции ψ мы увидим взлеты и падения около начала координат. Затем функция успокаивается при условии, что она удаляется (см. рисунок).

На волне Вселенной. Шрёдингер. Квантовые парадоксы - img_84.jpg

Для изучения вида функции ψ она может быть разделена на три зоны. B A Rизменения увеличивается, и ψ представляет несколько касательных. В С Rизменения стремится к нулю как касательная ψ.

1 ... 13 14 15 16 17 18 19 20 21 ... 33 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название