Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии читать книгу онлайн
В популярной форме рассказывается об истории вечного двигателя от первых попыток его создания до современных изобретений . Раскрывается значение для энергетики двух фундаментальных законов — первого и второго начал термодинамики. Показана бесполезность попыток обойти эти законы независимо от сложности предлагаемых для этого устройств.
Для широкого круга читателей, интересующихся историей техники и ее современными проблемами.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
После того как термин «работа» окончательно установился (в XIX в.), исчезла и двойственность понятия «сила». Теперь под силой понималось только воздействие, вызывающее движение тела в определенном направлении.
Так или иначе, в механике «закон сохранения силы» (а затем работы) не подвергался сомнению среди серьезных ученых. Уже во второй половине XVIII в. Парижская Академия наук в 1775 г. приняла официальное постановление о том, что она «не будет рассматривать никакой машины, дающей вечное движение».
В литературе обычно это решение цитируется очень кратко. Между тем в части, относящейся к ppm [21], содержатся интересные мысли [2.7].
«…Создание вечного двигателя абсолютно невозможно: даже если трение и сопротивление среды не уменьшают длительности воздействия движущей силы, она не может произвести равного ей эффекта. Причина этого состоит в следующем: если мы хотим, чтобы эффект, производимый силой конечной величины, действовал бесконечное время, необходимо, чтобы произведенный эффект был бесконечно мал.
Предположим, что тело, которому сообщили движение, при отсутствии трения и сопротивления способно сохранить это движение постоянно; но при этом не идет речь о других телах. Это вечное движение возможно было бы только в этих условиях (которые, впрочем, не могут существовать в природе); оно было бы совершенно бесполезно по отношению к другим объектам, предлагаемым обычно творцами вечного движения…» Здесь (правда, применительно только к механическому движению) закон сохранения «силы» и вытекающая из него невозможность вечного двигателя первого рода выражены совершенно четко. И далее:
«…Такой способ исследования, несомненно, дорого обходится; он уже разрушил много семей. Часты случаи, когда механик, который мог бы занять достойное место, растрачивал на это свою славу, время и талант. Таковы принципы, на которых основано решение Академии: постановляя, что она больше не будет заниматься этими вопросами, Академия заявляет о своем мнении о их бесполезности для сведения тех, кто будет ими заниматься. [22] Часто говорят, что, занимаясь химерическими проблемами, люди открывали полезные истины. Такая точка зрения была бы обоснованна в те времена, когда метод поиска истины был неизвестен во всех областях. В настоящее время, когда он известен, наиболее верный способ поиска истины — искать ее».
Эта часть решения звучит и теперь вполне современно. Здесь указано не только на бесполезность занятий химерическими проектами и пагубность их для самих изобретателей. Обращено внимание на необходимость применять, говоря современным языком, правильную методологию научного поиска. Нынешним ученым изобретателям ppm неплохо было бы вдуматься в умные слова, сказанные французскими академиками более 200 лет назад.
При всей важности и дальновидности решения Парижской Академии в нем не упоминалось о других формах движения и особенно о тепловой; вопрос об их связи с механическим движением оставался открытым. Соответственно оставалась и «щель» для идеологии, разрешающей ppm. Блестящие прозрения Лейбница и Ломоносова имели общий, философский характер. Развитие техники (паровые машины и другие тепловые двигатели, например машина Стирлинга [1.28, 1.29]) требовало осмысления процессов превращения тепла в работу и работы в тепло, точного их количественного анализа.
Первым правильно поставил (и в основе решил) задачу определения теплового эквивалента работы французский военный инженер Николай Леонар Сади Карно (1796— 1832 гг.), сын Л. Карно. Он опубликовал в 1824 г. ставшую впоследствии знаменитой небольшую книжку «Размышления о движущей силе огня и о машинах, способных развивать эту силу» [1.13]. В ней С. Карно заложил основы не только теории тепловых машин, но и второго закона термодинамики. Мы еще вернемся к труду Карно в следующей главе, когда займемся ppm-2. Здесь же нас интересуют взгляды Карно на ppm-1 и его вклад в «закон сохранения силы», из которого вышел закон сохранения энергии — первый законтермодинамики.
О ppm С. Карно писал в своей книге:
«Если бы это было возможно, то стало бы бесполезно искать движущую силу в потоках воды и воздуха, в горючем материале; мы имели бы бесконечный источник, из которого могли бы бесконечно черпать». И далее: «…могут здесь спросить: если доказана невозможность ppm для чисто механических действий, то сохраняется ли это при употреблении тепла или электричества; но разве возможно для явлений тепла или электричества придумать какую иную причину, кроме какого-либо движения тел, и разве эти движения не должны подчиняться законам механики?».
Что касается «сохранения силы» при взаимных превращениях тепла и работы, то позиция С. Карно была четко сформулирована в его более поздних записях:
«Тепло — не что иное, как движущая сила или, вернее, движение, изменившее свой вид; это движение частиц тел возникает повсюду, где происходит уничтожение движущей силы. Обратно: всегда при исчезновении тепла возникает движущая сила.
Таким образом, можно высказать общее положение: движущая сила существует в природе в неизменном количестве; она, собственно, никогда не создается, никогда не уничтожается; в действительности она меняет форму, т. е. вызывает то один вид движения, то другой, но никогда не исчезает. По некоторым представлениям, которые у меня сложились относительно теории тепла, создание единицы движущей силы требует затраты 2,7 единицы тепла».
Если заменить во всем тексте слова «движущая сила» на «энергия», а в последней фразе — на «работа», то формулировка Карно целиком может быть помещена в современный учебник физики. Карно не только сформулировал здесь закон сохранения энергии, но впервые дал числовой коэффициент для пересчета тепла в работу и наоборот. Это был качественный скачок, переход на новый уровень знаний, значение которого нельзя переоценить. Дальше мы увидим, с каким трудом эти истины входили в сознание людей.
Насколько правильно С. Карно подсчитал тепловой эквивалент работы? Анри Пуанкаре в 1892 г. писал: «Можно ли яснее и точнее высказать закон сохранения энергии? Заметим также, что значение эквивалента, вычисленного Карно в 2,7 ккал на единицу работы, за которую он принимает 1000 кГм, соответствует 370 кГм/ккал, что недалеко от истины (427 кГм/ккал)…».
Однако открытие Карно осталось неизвестным его современникам; он не успел его опубликовать. В 1832 г. С. Карно умер, заболев холерой. Только в 1878 г. его брат опубликовал записки, в которых содержался цитированный отрывок, вместе со вторым изданием книги «О движущей силе огня».
Это открытие Карно не оказало влияния на дальнейшее развитие учения о сохранении энергии; главные события, связанные с его установлением, произошли раньше — в 40-е и 50-е годы XIX в. Тем не менее приоритет С. Карно не подлежит сомнению.
Однако как основоположник закона сохранения энергии в историю вошел (с полным правом на это) другой человек, по существу «шедший вторым» — немецкий врач Роберт Майер (1814-1878 гг.). Он впервые опубликовал свой расчет механического эквивалента тепла в 1842 г. (полученная им цифра — 365 кГм/ккал — была немного менее точна, чем у Карно).
Р. Майер, как и многие другие первооткрыватели, принял на себя первые удары противников нового закона. Он понимал проблему энергетических превращений глубже и шире, чем его современники — физики, занятые той же задачей. Это было и хорошо, и плохо. Хорошо потому, что (хотя и не сразу) дало возможность закону сохранения энергии утвердиться в наиболее общей форме. Плохо потому, что работы Майера в значительной степени именно по этой причине долго «не доходили» до его современников и не были оценены по достоинству. Он прожил дольше Карно, но судьба его тоже была трагичной.