Избранные научные труды. Том 1
Избранные научные труды. Том 1 читать книгу онлайн
В первый том включены все основные работы Бора до 1925 г., т. е. до возникновения квантовой механики. Большинство статей тома посвящено первоначальной квантовой теории атома, прежде всего теории спектра атома водорода, теории периодической системы элементов, влиянию электрических и магнитных полей на спектральные линии, теории излучения.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
1 Р. Еhrеnfеst, G. Вrеit. Zs. f. Phys., 1922, 9, 207. В качестве примера авторы рассмотрели систему, состоящую из одной частицы, которая может свободно двигаться по круговой орбите, но подчиняющуюся при этом добавочному условию, что после нескольких оборотов с помощью какого-нибудь устройства направление вращения изменяется на обратное. Свободное вращение представляет здесь микропериодическое движение, тогда как регулярные изменения направления движения — макропериодические свойства. Авторы показали, каким образом свободное вращение приводит к появлению некоторых обертонов с большими периодами в определяемом регулярным изменением направления вращения периодическом движении. Эти обертоны вызывают преимущественно переходы, которые отвечают большим изменениям стационарных состояний, происходящим под действием указанного движения, и которые в отношении изменения энергии системы приближённо соответствуют переходам между стационарными состояниями свободно вращающейся частицы.
Как уже отмечалось в § 3 предыдущей главы, ясность, которую вносит принцип соответствия в определение стационарных состояний, послужит, вероятно, руководством в вопросе определения этих состояний в случае систем, для которых общее решение уравнений (1) по аналогии с многоэлектронными атомами не будет обладать свойствами простой периодичности. Этот принцип даёт основание для ограничения вероятности переходов, связанных с излучением, в процессе формирования атома путём последовательного связывания электронов, а также во время перестройки атома путём изменения его электронной конфигурации, вызванного внешними воздействиями. В последующих статьях мы более подробно остановимся на этом вопросе и попытаемся показать, что этот принцип является исходным пунктом при решении проблемы стабильности нормальных состояний атома, являющейся основной для обсуждения свойств элементов.
§ 4. Принцип соответствия и структура излучения
При установлении принципа соответствия существенное значение имеет гипотеза о наличии глубокой связи между наблюдаемым характером излучения, которое, согласно второму постулату, испускается при переходе между двумя стационарными состояниями, и излучением, которое, в соответствии с классической электродинамикой, испускалось бы атомной системой вследствие присутствия в электрическом моменте соответствующих компонент колебаний. Таким образом, следует ожидать, что структура излучения, наблюдаемого в различных направлениях, будет подобна структуре излучения, которое, согласно классической теории, испускалось бы электроном, совершающим гармоническое эллиптическое колебание. В тех случаях, когда соответствующее колебание для каждого движения системы является линейным или круговым, как это имеет место в случае невырожденной аксиально симметричной системы, следует ожидать, что испущенная система волн также будет обладать линейной или круговой поляризацией. Эти выводы были подтверждены всюду, где оказалось возможным сравнить их с опытом, как это было при исследовании влияния электрических и магнитных полей на спектральные линии. В связи с этим следует отметить, что, несмотря на тесную связь между излучением и движением, в вопросе поляризации также надо быть готовым к тому, что в некоторые моменты можно встретиться с очевидными отклонениями от классической теории. Подобно тому, как в соответствии с постулатами квантовой теории у атомных систем можно было ожидать резкие спектральные линии, из особых условий стабильности стационарных состояний и характера излучения в процессах перехода следует, что в некоторых случаях, где классическая теория этого не требовала бы, можно ожидать дискретного изменения поляризации. Характерным примером этого является замкнутая атомная система, помещённая в магнитное или электрическое поле. В то время как, согласно классической теории, каждая ориентация атома в целом по отношению к полю в первом приближении будет равноправна, в квантовой теории это будет совсем иначе; дело в том, что новые, дополнительные периоды движения, вызванные секулярными возмущениями, будут требовать особых условий для стационарных состояний, в результате чего некоторые ориентации будут предпочтительнее 1. Однако мы должны быть готовы к тому, что в противоположность классической теории, кроме характерной поляризации различных компонент, на которые разлагаются отдельные линии, неполяризованный свет, представляющий собой сумму всех компонент, может обнаруживать характерное состояние поляризации по отношению к вектору поля даже при очень слабых полях. Установление различными исследователями 1 такого воздействия, так же как и тот факт, что вообще наблюдаются резкие спектральные линии 2, может, по-видимому, рассматриваться как подтверждение положений квантовой теории.
1 Прямое (не спектроскопическое) доказательство существования добавочных условий ориентации приведено Штерном и Герлахом (Zs. f. Phys., 1922, 9, 349) в их весьма важном исследовании отклонения движущихся атомов серебра в неоднородном магнитном поле. Вопрос о быстром установлении ориентации атома, которое наблюдалось в этой работе, обсуждается Эйнштейном и Эренфестом в недавно появившейся статье [Zs. f. Phys., 1922, 11, 31. (См. перевод: А. Эйнштейн. Собр. науч. трудов, т. III. М., 1966, стр. 442.— Ред.)]. В этой работе рассмотрены принципиальные трудности, не позволяющие дать объяснение процесса установления. В связи с этим можно обратить внимание на то, что влияние поля на гармонические компоненты, через которые может быть выражено движение в атоме, заключается не только в появлении новых колебаний, частоты которых пропорциональны внешним силам, но несёт с собой также и видоизменение гармонических компонент движения в невозмущённом атоме. Поэтому скорость установления атома в поле вряд ли могла быть оценена на основе времени жизни стационарных состояний рассматриваемого атома, в движении которого, как показано в упомянутой статье, присутствовали бы только первые компоненты. Напротив, для скорости установления определяющим должно служить время жизни стационарного состояния возбуждённого невозмущённого атома. То, что в упомянутых исследованиях, касающихся невозмущённого движения, мы имели дело не с возбуждёнными атомами, а только с атомами в нормальном состоянии, в принципе не противоречит такой точке зрения; наоборот, в этом особенно отчётливо проявляется формальная природа квантовой теории в её сегодняшней форме (см. гл. III).
1 Ср.: W. Vоigt. В кн.: Handbuch der Elektrizität, IV, S. 624 (статья по магнетооптике). См. также: Н. Rausch von Traubenberg, Naturwiss. 1922, 10, 791 — в этой статье установлено соответствующее действие магнитного поля в наиболее простом случае спектра водорода.
2 Предположение, что поляризация спектральной линии неполяризованного света под влиянием слабых внешних полей может изменяться лишь несущественно, было рассмотрено в I, ч. 5, стр. 121, как необходимое требование спектроскопической стабильности. Поскольку, согласно основным положениям квантовой теории, это требование не может считаться обоснованным, отпадает основной аргумент против возможности выразить вероятность перехода между двумя стационарными состояниями в общем виде с помощью механических символов.
В этом параграфе мы рассмотрим ещё некоторые вопросы, связанные непосредственно с формулировкой второго постулата, которых мы умышленно до сих пор не касались. Мы остановимся здесь частично на вопросах выбора системы координат, в которой должна быть определена частота ν системы волн, испускаемой в процессе излучения, и частично на проблеме строгости определения этой частоты. Что касается первого вопроса, то для замкнутой атомной системы требование соответствия приводит непосредственно к предположению, что для измерения частоты, определяемой соотношением (В), система координат должна быть выбрана так, чтобы атомная система в целом представлялась в ней как покоящаяся 3, по аналогии с системой координат для определения стационарных состояний с помощью условий (А). Естественно было бы предположить, что испущенная система волн в другой системе координат при наблюдении в различных направлениях будет проявлять допплеровский эффект такого рода, какой известен из теории относительности и обнаруживается в опытах с каналовыми лучами. Однако для незамкнутых систем мы встречаемся здесь с некоторыми трудностями, поскольку точно определённая система координат сама по себе не очевидна. Характерным примером этого является рассматриваемое в следующем параграфе соударение между атомной системой и свободным электроном, сопровождаемое излучением, причём электрон остаётся свободным.
