Избранные научные труды. Том 2
Избранные научные труды. Том 2 читать книгу онлайн
Во втором томе помещены работы Нильса Бора, опубликованные после 1925 г. Они охватывают в основном вопросы квантовой механики, квантовой электродинамики и теории атомного ядра. Кроме того, в том вошёл ряд статей по общим вопросам современного естествознания, по истории физики и несколько очерков о выдающихся физиках — современниках Бора. В совокупности публикуемые работы в достаточно полной мере характеризуют научное творчество выдающегося датского учёного после создания квантовой механики.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Я привёл эти замечания, отражающие взгляды того круга, в котором я вырос и чьи дискуссии я слушал в молодости, потому что они представляют подходящую исходную точку для исследования места, занимаемого живыми организмами в описании природы. Как я попытаюсь показать, современное развитие атомной физики, увеличив наши знания об атомах и о том, как они составлены из более элементарных частиц, обнаружило вместе с тем принципиальную ограниченность так называемого механистического представления о природе. Этим оно создало новые предпосылки для решения вопроса, имеющего прямое отношение к нашему предмету, а именно: что мы можем понимать под научным объяснением и что мы можем от него требовать?
Для того чтобы представить положение в физике как можно яснее, я прежде всего напомню вам тот крайний взгляд, который был выражен в известной идее Лапласа о мировой машине и который возник под влиянием больших успехов классической механики. Согласно этой концепции, все взаимодействия между частями, составляющими эту машину, подчиняются законам механики; поэтому интеллект, знающий расположение и скорости этих частей, мог бы предсказать все последующие события во вселенной, включая поведение животных и человека. Эта идея, как известно, играла большую роль в философских дискуссиях; однако во всей этой концепции не было обращено должного внимания на те предпосылки, которые нужны для того, чтобы были применимы такие понятия, без каких невозможно сообщение о физическом опыте.
В этом отношении дальнейшее развитие физики настоятельнейшим образом преподало нам урок. Уже чрезвычайно важное толкование тепловых явлений как непрерывного движения молекул в газах, жидкостях и твердых телах привлекло внимание к большому значению условий наблюдения для описания опытных фактов. Конечно, не могло быть и речи о подробном описании движения бесчисленных молекул среди себе подобных; можно было говорить лишь о выводе статистических закономерностей теплового движения путём использования общих механических принципов. Своеобразный контраст между обратимостью простых механических процессов и необратимостью, типичной для многих термодинамических явлений, был, таким образом, разъяснён тем фактом, что применение понятий, подобных температуре и энтропии, относится к экспериментальным условиям, несовместным с полным контролем над движением отдельных молекул.
В сохранении и росте живых организмов видели иногда противоречие с вытекающим из законов термодинамики стремлением к температурному и энергетическому равновесию изолированной физической системы. Однако мы должны помнить, что живые организмы непрерывно снабжаются свободной энергией путём питания и дыхания и самые тщательные физиологические исследования никогда не обнаруживали никакого отклонения от принципов термодинамики. Всё же признание такого рода сходства между живыми организмами и обыкновенными силовыми двигателями, конечно, никоим образом не достаточно для ответа на вопрос о положении живых организмов в описании природы; этот вопрос, очевидно, требует более глубокого анализа проблемы наблюдения.
Как раз эта проблема и была неожиданно выдвинута на первый план открытием универсального кванта действия, выражающего свойство цельности атомных процессов; это свойство не допускает того различения между наблюдением явления и поведением объектов самих по себе, которое столь характерно для механистической концепции природы. В физических системах обычного масштаба изображение событий как цепи состояний, описываемых доступными измерению величинами, покоится на том обстоятельстве, что мы имеем здесь дело с действиями достаточно большими, чтобы можно было пренебрегать взаимодействием между объектами и телами, которые служат как измерительные инструменты. В условиях, когда квант действия играет решающую роль и когда взаимодействие составляет неотъемлемую часть явления, уже нельзя в этой же мере приписывать явлениям ход, точно определённый в механическом смысле.
Мы стоим здесь перед крушением обычных физических наглядных представлений; это крушение убедительно сказывается в трудности говорить о свойствах атомных объектов независимо от условий их наблюдения. В самом деле, электрон, несомненно, можно рассматривать как заряженную материальную частицу, поскольку измерения его инертной массы всегда дают один и тот же результат и поскольку каждая передача электричества между атомными системами всегда равна целому кратному числу так называемого единичного заряда. Между тем интерференционные эффекты, возникающие, когда электроны проходят сквозь кристаллы, несовместимы с механическими представлениями о движении частиц. Мы встречаем аналогичные черты в известной дилемме о природе света, поскольку оптические явления требуют понятия о распространении волн, тогда как законы передачи количества движения и энергии в атомных фотоэффектах опираются на механическое представление о частицах.
Эта ситуация, новая в физической науке, потребовала нового анализа тех предпосылок, на которых основано применение понятий, употребляемых нами для ориентирования в окружающем. Конечно, в атомной физике мы сохраняем свободу ставить природе вопросы в форме экспериментов, но мы должны признать, что все разнообразные экспериментальные условия определяются исключительно телами, настолько тяжёлыми, что в описании их действия можно не считаться с квантом. Информация об атомных объектах получается только в форме следов, которые они оставляют на этих измерительных приборах; таким следом является, например, пятно от удара электрона о фотографическую пластинку, помещённую в экспериментальной установке. То обстоятельство, что такие следы происходят от необратимых усилительных эффектов, придаёт явлениям своеобразный законченный характер, прямо указывающий на принципиальную необратимость самого понятия наблюдения.
Особенность положения в квантовой физике состоит прежде всего в том, что информация, полученная об атомных объектах, не может быть объединена и истолкована на основе того подхода, который типичен для механистической концепции природы. Уже тот факт, что в одной и той же экспериментальной установке будут, вообще говоря, регистрироваться наблюдения, относящиеся к разным индивидуальным квантовым процессам, влечёт за собой принципиальное ограничение детерминистического метода описания. Далее, классическое физическое описание покоится на требовании неограниченной возможности подразделять явление; но это требование явно несовместимо со свойством цельности типичных квантовых явлений. В самом деле, всякое поддающееся определению подразделение требует изменения экспериментальной установки, благодаря которому возникают новые индивидуальные эффекты.
Чтобы характеризовать соотношение между явлениями, наблюдёнными при разных экспериментальных условиях, был введён термин «дополнительность»; он подчёркивает тот факт, что взятые вместе такие явления исчерпывают всю поддающуюся определению информацию об атомных объектах. Идея дополнительности отнюдь не содержит произвольного отказа от привычного физического объяснения; но она непосредственно относится к нашему положению наблюдателей в такой области опыта, где однозначное применение понятий, используемых при описании явлений, существенно зависит от условий наблюдения. Математическое обобщение системы понятий классической физики дало возможность развить формальный аппарат, в котором остаётся место для логического включения кванта действия. Непосредственная цепь этой так называемой квантовой механики состоит в формулировании статистических закономерностей, относящихся к данным, добытым в определённых условиях наблюдения. Принципиальная полнота такого рода описания обеспечивается тем, что при этом идеи классической механики сохраняются в пределах, достаточных для характеристики любых поддающихся определению вариантов экспериментальных условий.
Дополнительный характер квантовомеханического описания ясно выражен в способе описания состава и реакций атомных систем. Так, характерные спектры элементов и валентности химических соединений зависят от закономерностей, относящихся к энергетическим состояниям атомов и молекул, а эти закономерности обнаруживаются только при таких обстоятельствах, когда возможность контроля над положениями электронов в атоме или в молекуле исключена. В этой связи интересно отметить, что плодотворное применение структурных формул в химии покоится единственно на том факте, что атомные ядра намного тяжелее электронов. Однако что касается устойчивости и превращений самих ядер, то там квантовомеханические свойства опять становятся решающими. Только в дополнительном описании, выходящем за рамки механистического понимания природы, и можно найти место для фундаментальных закономерностей, определяющих свойства тех веществ, из которых состоят наши инструменты и наши тела.