-->

Избранные научные труды. Том 2

На нашем литературном портале можно бесплатно читать книгу Избранные научные труды. Том 2, Бор Нильс Хенрик Давид-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Избранные научные труды. Том 2
Название: Избранные научные труды. Том 2
Дата добавления: 16 январь 2020
Количество просмотров: 300
Читать онлайн

Избранные научные труды. Том 2 читать книгу онлайн

Избранные научные труды. Том 2 - читать бесплатно онлайн , автор Бор Нильс Хенрик Давид

Во втором томе помещены работы Нильса Бора, опубликованные после 1925 г. Они охватывают в основном вопросы квантовой механики, квантовой электродинамики и теории атомного ядра. Кроме того, в том вошёл ряд статей по общим вопросам современного естествознания, по истории физики и несколько очерков о выдающихся физиках — современниках Бора. В совокупности публикуемые работы в достаточно полной мере характеризуют научное творчество выдающегося датского учёного после создания квантовой механики.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Развитию так называемых точных наук, характеризуемых установлением численных соотношений между результатами измерений, сильно способствовали абстрактные математические методы, возникшие на почве независимой разработки обобщающих логических построений. Это положение особенно хорошо поясняется в физике; первоначально под физикой понимали вообще все знания о той природе, частью которой мы сами являемся, но постепенно физика стала означать изучение элементарных законов, управляющих свойствами неживой материи. Необходимость всегда, даже в пределах этой сравнительно простой темы, обращать внимание на проблему объективного описания глубоко влияла на взгляды философских школ на протяжении многих веков. В наши дни исследование новых областей, открывшихся перед экспериментом, обнаружило, что для однозначного применения некоторых самых элементарных понятий требуются предпосылки, о которых раньше и не подозревали. Тем самым мы получили урок и по линии теории познания, причём урок этот касается и тех проблем, которые лежат далеко за пределами физики. Поэтому представляется целесообразным начать наше обсуждение с краткого обзора этого развития.

Нас завело бы слишком далеко, если бы мы стали вспоминать во всех подробностях, как была построена механика; как с преодолением мифических космологических идей и аргументов, ссылающихся на цель наших собственных действий, возникла на основе, заложенной новаторскими работами Галилея, стройная система механики, достигшая такого совершенства благодаря мастерству и гению Ньютона. Прежде всего принципы механики Ньютона внесли значительную ясность в проблему причины и следствия; это было достигнуто благодаря тому, что они позволяли по состоянию физической системы в данный момент, определяемому через измеримые величины, предсказать её состояние в любое последующее время. Хорошо известно, как такого рода детерминистическое или каузальное описание привело к механистическому пониманию природы; такой тип описания сделался идеалом научного объяснения во всех областях знания вне зависимости от того, каким путём эти знания получены. Поэтому особенно важно отметить, что изучение более широкой области физического опыта выявило необходимость более пристального рассмотрения проблемы наблюдения.

В пределах своей обширной области применения классическая механика даёт объективное описание, в том смысле, что оно основано на чётко определённом употреблении представлений и идей, приспособленных к событиям повседневной жизни. Однако какими бы разумными ни казались идеализации, которыми пользуется ньютонова механика, они фактически зашли далеко за пределы опыта, к которому приспособлены наши элементарные понятия. Так, адекватное употребление понятий абсолютных пространства и времени теснейшим образом связано с практически мгновенным распространением света, позволяющим нам локализовать тела вокруг нас независимо от их скорости и располагать события в единую временную последовательность. Однако попытка составить логически стройное описание оптических и электромагнитных явлений обнаружила, что наблюдатели, движущиеся относительно друг друга с большими скоростями, будут координировать события неодинаково. Такие наблюдатели будут судить различно о форме и положении твердых тел, и, кроме того, события в разных точках пространства, которые одному наблюдателю кажутся одновременными, другому могут показаться происходящими в разное время.

Исследование того, в какой мере описание физических явлений зависит от точки зрения наблюдателя, не только не внесло никакой путаницы или усложнения, но, наоборот, оказалось неоценимой путеводной нитью при разыскании основных физических законов, общих для всех наблюдателей. Сохраняя идею детерминизма, но основываясь исключительно на зависимости между однозначными измерениями, которые сводятся в конечном счёте к совпадению между событиями, Эйнштейн сумел перестроить и обобщить всё здание классической физики и тем самым придать нашей картине мира единство, превосходящее всё, что можно было ожидать. В общей теории относительности описание основано, с одной стороны, на криволинейной четырёхмерной метрике пространства-времени, которая автоматически учитывает гравитационные эффекты, и, с другой стороны, на исключительной роли скорости световых сигналов, которая представляет верхний предел в любом непротиворечивом приложении физического понятия скорости. Введение таких хотя и непривычных, но чётко определённых математических абстракций ни в коем случае не вносит какой-либо неоднозначности; напротив, это есть поучительный пример того, как расширение системы понятий даёт надлежащие средства для устранения субъективных элементов и для расширения объективного описания.

Новые, неожиданные стороны проблемы наблюдения были открыты в связи с исследованиями атомного строения материи. Как хорошо известно, идея о том, что делимость вещества не беспредельна, восходит к древности; её ввели, чтобы согласовать постоянство характерных свойств веществ с разнообразием явлений природы. Однако почти до наших дней такие взгляды считались по существу гипотетическими, в том смысле, что прямая проверка их наблюдением представлялась невозможной из-за грубости наших органов чувств и наших приборов, которые сами состоят из бесчисленных атомов. Но в связи с большим прогрессом в физике и химии, достигнутым за последние столетия, плодотворность атомных идей становилась всё более несомненной. В частности, непосредственное применение классической механики к взаимодействию между атомами и молекулами, происходящему во время их беспрерывного движения, привело к общему пониманию принципов термодинамики.

В текущем столетии изучение вновь открытых свойств материи, таких, как естественная радиоактивность, убедительно подтвердило основы атомной теории. В частности, благодаря развитию усилительных устройств стало возможным изучать явления, существенно зависящие от отдельных атомов, и даже удалось получить обширные сведения о структуре атомных систем. Первым шагом было признание того, что электрон является общей составной частью всех веществ; дальнейшим шагом, существенно дополнившим наши представления о строении атома, было открытие Резерфордом атомного ядра, где в чрезвычайно малом объёме сосредоточена почти вся масса атома. Неизменяемость свойств элементов при обычных физических и химических процессах непосредственно объясняется тем, что в таких процессах, хотя связи электронов и могут сильно меняться, ядро остаётся без изменений. Резерфордом была доказана также и взаимная превращаемость атомных ядер под действием более мощных сил. Тем самым Резерфорд открыл совершенно новую область исследований, которую часто называют современной алхимией. Как известно, эти исследования должны были в конечном счёте привести к возможности освобождать огромные количества энергии, запасённые в атомных ядрах.

Хотя ряд фундаментальных свойств материи и объяснялся на основе простой картины атома, но с самого начала было ясно, что классические идеи механики и электромагнетизма недостаточны для объяснения существенной устойчивости атомных структур, которая проявляется в том, что элементы имеют характерные для них свойства. Ключ к выяснению этой проблемы дало открытие Планком в первый год нашего столетия универсального кванта действия. К этому открытию Планка привёл его проницательный анализ законов теплового излучения. Открытие Планка выявило присущее атомным процессам свойство цельности, совершенно чуждое механистическому пониманию природы. Стало ясно, что классические физические теории — это идеализации, пригодные только для описания таких явлений, в анализе коих все величины размерности действия достаточно велики, чтобы можно было пренебречь квантом действия. Это условие выполняется с избытком в явлениях обычного масштаба, в атомных же явлениях мы встречаемся с закономерностями совсем нового вида, не поддающимися детерминистическому наглядному описанию.

Рациональное обобщение классической физики, которое учитывало бы существование кванта, но по-прежнему позволяло бы однозначное толкование опытных фактов, допускающих определение инертной массы и электрического заряда электрона и ядра, представляло очень трудную задачу. Соединёнными усилиями целого поколения физиков-теоретиков было тем не менее постепенно создано стройное и — в широких пределах — исчерпывающее описание атомных явлений. Это описание использует математический аппарат, в который вместо переменных величин классических физических теорий входят символы, подчинённые некоммутативным правилам умножения, содержащим постоянную Планка. Благодаря самому характеру таких математических абстракций этот формальный аппарат не допускает привычного наглядного толкования; он предназначен для того, чтобы установить зависимости между наблюдениями, полученными при чётко определённых условиях. Зависимости эти имеют существенно статистический характер в соответствии с тем, что в данной экспериментальной установке могут иметь место различные индивидуальные квантовые процессы.

Перейти на страницу:
Комментариев (0)
название