-->

Свет в море

На нашем литературном портале можно бесплатно читать книгу Свет в море, Войтов Виталий Иванович-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Свет в море
Название: Свет в море
Дата добавления: 16 январь 2020
Количество просмотров: 384
Читать онлайн

Свет в море читать книгу онлайн

Свет в море - читать бесплатно онлайн , автор Войтов Виталий Иванович

Книга посвящена одному из сложных и интересных разделов науки — гидрооптике которая изучает проникновение и распространение света в море.

В настоящее время знать физические законы, определяющие эти процессы, особенно необходимо в связи с решением такой важной и актуальной проблемы, как освоение ресурсов Мирового океана.

Человек начал наступление на водную целину. Но для успешного его завершения следует разобраться в массе трудных вопросов гидрооптики.

Чем объясняется цвет моря и почему разные моря имеют разный цвет? От чего зависит прозрачность морской воды и несколько глубоко проникает свет в океанские глубины? Почему море светится? Ответы на все эти вопросы и дает настоящая книга.

Она написана легко, физическая сущность процессов объяснена весьма доступно. Издание рассчитано на широкие круги читателей.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 10 11 12 13 14 15 16 17 18 ... 37 ВПЕРЕД
Перейти на страницу:
Свет в море - i_036.jpg

Рис. 29. Что мы видим из-под воды

Волнение значительно усложняет описанную выше картину. Когда на море волны, лучи Солнца встречают искривленную морскую поверхность в разных точках под разными углами. Соответственно различен и коэффициент отражения света поверхностью моря в разных точках, зависящий (см. рис. 28) от угла падения лучей.

Если Солнце находится высоко над горизонтом, средний угол падения лучей на волнующуюся поверхность моря больше, чем при штилевой погоде. Увеличивается общее количество света, отраженного морской поверхностью, и соответственно уменьшается количество света, вошедшего в воду. При высотах Солнца от 55 до 90° коэффициент пропускания света поверхностью моря уменьшается от 97–98 % в штилевую погоду до 94 % при волнении больше одного балла. Наоборот, при низком Солнце становится заметным затенение гребнями волн горизонтальных участков поверхности. Отражение света происходит от крутых участков поверхности гребней, для которых угол падения, солнечных лучей мал. В результате этого значительно увеличивается коэффициент пропускания света поверхностью моря: при высоте Солнца 10° этот коэффициент возрастает от 72 % для штилевой погоды до 83 % при наличии волн.

При высотах Солнца, близких к 25°, влияние волнения практически не сказывается: пропускание света и для штилевой и для ветреной погоды составляет приблизительно 90 %.

Исследователи, измерявшие с помощью подводного фотометра освещенность под самой поверхностью моря, столкнулись с одним загадочным явлением: в ветреные дни освещенность на 15–30 % меньше значения, которое получается из измерений отраженного светового потока. В мертвый штиль этого явления не наблюдается. Куда же исчезает солнечная энергия?

Было выдвинуто несколько гипотез. Одна из них предполагала существование непосредственно под поверхностью моря относительно непрозрачного слоя воды толщиной от нескольких сантиметров до 1–2 м. Сильно взмученный и наполненный воздушными пузырьками слой считался виновником необъяснимой потери световой энергии. Эта гипотеза вызвала большие сомнения и была отвергнута более поздними исследованиями.

Объяснение таинственному «эффекту поверхностной потери» дал А. А. Гершун.

На рис. 30 видно, как волнение перераспределяет освещенность на горизонтальной поверхности. Мелкие волны ряби действуют на падающие лучи света как собирательные и рассеивающие цилиндрические линзы. Они фокусируют солнечные лучи в небольших объемах, создавая в других областях заметные разрежения света. По теоретическим расчетам, сфокусированные волнами световые лучи могут создавать на глубинах до 6–9 м освещенность, в 8 раз превышающую среднее для данного горизонта значение. Но так как области сгущения света занимают объем гораздо меньший, чем области пониженной освещенности, подводный фотометр будет показывать значение освещенности ниже средней. Поверхность моря динамична, и время от времени стрелка измерительного прибора резко отклоняется в сторону больших значений освещенности — это через место расположения фотоэлемента под водой проходит фокус «волновых линз».

Свет в море - i_037.jpg

Рис. 30. Объяснение «эффекта поверхностной потери»

Есть предположения, что прерывистость и неравномерность подводного освещения в поверхностных слоях моря влияют на процесс фотосинтеза и первичную продукцию.

Ослабление солнечного света с глубиной

Дальнейшую судьбу света, попавшего в воду, определяют два физических процесса: поглощение и рассеяние. В морской воде рассеяние, как правило, значительно интенсивнее поглощения, и вследствие этого свет в море рассеивается многократно. Каждый фотон успевает несколько раз изменить направление своего движения, прежде чем будет поглощен средой.

С увеличением глубины количество прямого солнечного света уменьшается по сравнению с рассеянным, который становится преобладающим. Кроме того, в море всегда попадает свет, рассеянный атмосферой. Распространяясь вглубь, он также подвергается поглощению и рассеянию.

Так как индикатриса рассеяния морской воды резко вытянута в направлении падающего пучка, то в процессе рассеяния подавляющая часть фотонов солнечного света незначительно изменяет направление своего движения и по-прежнему распространяется в глубь моря. Лишь небольшая доля рассеянного света направлена вверх и создает в море восходящий световой поток.

Мы уже говорили о том, что попавшие в воду световые лучи отклонены от вертикали не более чем на 48°. Если бы в море не было рассеяния, то, нырнув на глубоком месте (где можно пренебречь отражением от дна), мы увидели бы свет только по этим направлениям, а снизу и сбоку нас окружал бы сплошной мрак.

Благодаря многократному рассеянию все море буквально пронизано светом: через любую точку под водой проходит бесчисленное множество световых пучков самых различных направлений. «Как только наши глаза оказывались под водой, — рассказывает Тур Хейердал, — источник света — в отличие от нашего надводного мира — как бы переставал существовать. Преломленные лучи доходили до нас не только сверху, но и снизу; солнце больше не сияло, оно было повсюду… Здесь внизу свет отличался изумительной ясностью и действовал на нас, привыкших на палубе к тропическому солнцу, очень успокаивающе. Даже тогда, когда мы смотрели вниз, в бездонную глубину океана, где царит вечная черная ночь, эта ночь являлась нам окрашенной в приятный голубой цвет, так как от нее отражались солнечные лучи» [17].

Для того чтобы нагляднее представить, как распределяется излучение по различным направлениям, разложим мысленно в какой-нибудь точке под водой нисходящий и восходящий световые потоки на «элементарные» световые пучки. Проведем из рассматриваемой точки в направлении каждого пучка отрезок, пропорциональный его яркости. Затем, соединив концы отрезков, получим замкнутую поверхность. Объемное тело, ограниченное этой поверхностью, называется телом яркости.

Форма тела яркости дает представление о структуре светового поля в данной точке. Например, параллельный пучок света имеет тело яркости в виде прямолинейного отрезка в направлении этого пучка, а излучение, рассеянное равномерно по всем направлениям, имеет тело яркости в виде шара.

Свет в море - i_038.jpg

Рис. 31. Изменение формы тела яркости с глубиной

1—4 м; 2—10 м; 3—17 м; 4—29 м; 5—41 м; 6—54 м; 7—66 м

Под совместным воздействием рассеяния и поглощения форма тела яркости в море изменяется с глубиной (рис. 31).

Вблизи поверхности преобладает прямой солнечный свет. Тело яркости резко вытянуто в направлении солнечных лучей, особенно при безоблачном небе. В результате рассеяния вытянутость тела яркости уменьшается с глубиной, оно укорачивается и становится более округлым. Кроме того, меняется и направление преимущественного распространения излучения: световые пучки, значительно отличающиеся от вертикальных, проходят в воде больший путь и, следовательно, ослабляются с глубиной сильнее. Таким образом, ось тела яркости с глубиной постепенно поворачивается до тех пор, пока не совпадет с вертикалью (см. рис. 31).

На достаточно больших глубинах тело яркости приобретает постоянную форму. Такое установившееся распределение излучения на глубине называют глубинным режимом. Важно отметить, что форма тела яркости в глубинном режиме зависит от оптических свойств морской воды в данном месте, а условия внешнего освещения и состояние поверхности моря не играют никакой роли. Например, в полностью рассеивающей среде (поглощение отсутствует) глубинное тело яркости независимо от внешнего освещения имеет форму шара, а в полностью поглощающей среде (рассеяние отсутствует) оно изображается прямолинейным отрезком. В промежуточных случаях тело яркости в глубинном режиме представляет собой тело вращения относительно вертикальной оси, вытянутость которого зависит от соотношения между рассеянием и поглощением, а также от формы индикатрисы рассеяния.

1 ... 10 11 12 13 14 15 16 17 18 ... 37 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название