Обзор ядерных аварий с возникновением СЦР (LA-13638)
Обзор ядерных аварий с возникновением СЦР (LA-13638) читать книгу онлайн
Обсуждаются ядерные аварии с возникновением самоподдерживающейся цепной реакции (СЦР) и характеристики разгона на мгновенных нейтронах на критических сборках. Рассмотрено 60 аварий на различного типа оборудовании и установках. Приводятся детали, позволяющие читателю понять физическую картину, химические процессы во время аварии, а также предоставляется информация об административной обстановке на промежутке времени, предшествующем возникновению аварии, в тех случаях, когда она доступна. Приводится картина изменения мощности во времени, приводятся данные об энерговыделении, последствиях и причинах аварии. Для описания тех аварийных ситуаций, которые возникли на промышленных предприятиях, в настоящую версию были включены два новых раздела. В первом из них содержится анализ и выводы о физических и ядерно-физических свойствах систем, в которых происходила цепная реакция. Во втором обобщаются наблюдения и обсуждаются извлеченные уроки. Обсуждение случаев резкого превышения мощности крупных энергетических реакторов не включено в данный отчет.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
• Хранение в камере «богатых» шлаков вместе с часто встречающимися «бедными» шлаками.
• Нечеткие и трудно читаемые надписи на емкостях со шлаками.
• Нарушение технологического процесса (последовательности) при загрузке реагентов.
• Неадекватный контроль над операциями со стороны руководства; неадекватное внимание к тому, чтобы все учетные документы велись должным образом.
• Отсутствие приборов технологического контроля.
Предполагаемой причиной аварии стала нейтрализация раствора в реакторе порцией шлаков, содержание плутония в которой оказалось аномально высоким.
Персонал в этой аварии не пострадал и не получил больших доз, что впоследствии подтвердилось при медицинском обследовании; разрушений не было, однако внутри камера была загрязнена соединениями плутония, и потребовалась дезактивация.
12. Сибирский химический комбинат, г. Северск, Химико-металлургический завод, 30 января 1963 г
Установка для растворения отходов, содержащих уран с обогащением 90 %; многочисленные всплески мощности; незначительные дозы облучения.
Установка являлась частью технологической линии по регенерации отходов металлургического производства урана. Отходы представляли собой труднорастворимые осадки, требовавшие длительного растворения в концентрированной азотной кислоте. Для оптимизации процесса в установке использовались два растворителя, загружавшихся поочередно. Схема установки изображена на рисунке 18.
Раствор из реактора в промежуточную емкость, далее на нутч-фильтр и сборник передавался с помощью вакуума. Все оборудование имело опасную геометрию, и предотвращение в нем критичности обеспечивалось ограничением массы делящегося материала и практически полностью зависело от надежности аналитического контроля урана в отходах и растворах.
Количество отходов, загружаемых в реактор-растворитель, рассчитывалось по результатам химического анализа на содержание урана в отходах. Перед загрузкой в растворитель отходы взвешивали. Технологическим регламентом допускалось повторное использование растворов с низкой концентрацией урана из сборников 64-А или 64-В для растворения очередной партии отходов в реакторах 61-А или 61-В, при этом масса урана в загружаемых на растворение отходах и возвращаемых растворах не должна была превышать установленного предела (нормы) загрузки урана. Для этого пробы раствора на анализ концентрации урана отбирали из сборников 64-А и 64-В.
Несмотря на важную роль аналитического контроля урана, результаты лабораторных анализов проб из отходов допускалось выражать любой из двух следующих единиц:
1) грамм урана на один килограмм отходов, г/кг;
2) отношение массы урана к массе отходов, массовая доля, %.
Для концентрации растворов использовалась только одна единица — г/л.
30.01.1963 г. на установку растворения поступили два контейнера с отходами и результатами лабораторного анализа проб из них, выраженными в процентах (~18 %). Руководитель работ на установке в задании операторам записал результат для концентрации урана в отходах как 18 г/кг, т. е. ошибочно уменьшил его реальное значение в десять раз.
Оператор загрузил 2 кг отходов в аппарат 61-А из одного контейнера и 5 кг из другого, что соответствовало реальной массе ~1260 г урана. В следующую смену другой оператор завершил операцию растворения и передал раствор в сборник 64-А. Из этого раствора была отобрана проба для химического анализа. Оператор следующей смены по телефону запросил результат анализа раствора в сборнике 64-А. Из лаборатории ошибочно сообщили результат для раствора не из сборника 64-А, а из другой емкости, в которой концентрация урана была в ~10 раз меньше. Руководитель работ на основании этой информации принял решение использовать этот «бедный» раствор для растворения следующей партии отходов с массой 1255 граммов. Оператор передал раствор из сборника 64-А в реактор-растворитель, в котором таким образом оказалось более 2500 г урана (масса урана, близкая к критической). Однако в реакторе критическое состояние не было достигнуто во время процесса растворения.
В отличие от сборника 64-В, имевшего с двух сторон отражатель из кирпича, реактор 61-А находился в центре помещения. В процессе фильтрации раствора в сборник 64-В в 18 ч 10 мин 30.01.63 г. уровень раствора превысил критическую высоту, и возник первый пик мощности цепной реакции.
По результатам расследования обстоятельств ядерной аварии было установлено, что в сборнике 64-В находилось около 2520 г U с концентрацией ~71 г/л в объеме 35,5 л. Сборник представлял собой цилиндр диаметром 390 мм и имел полусферическое днище.
Цепная реакция имела циклический характер: за ~10 часов было зарегистрировано 8 пиков цепной реакции уменьшающейся мощности с общим энерговыделением около 7,9 X 1017 дел. Это значение определено по результатам анализа проб на содержание продукта деления 140La в растворе после ядерной аварии. Самогашение пиков происходило благодаря следующим эффектам: образованию радиолитического газа и выбросу части раствора в коммуникации, нагреванию раствора и вызванному им уменьшению плотности системы (росту утечки нейтронов), а также увеличению температуры нейтронного газа (увеличению жесткости его энергетического спектра). По мере остывания раствора и его слива обратно из коммуникаций система вновь становилась надкритической.
Для полного прекращения цепной реакции в 4 ч 30 мин 31.01.1963 г. часть раствора была слита из сборника 64-В в переносные емкости объемом 5 литров. Весь раствор (~35,5 л) хранился в течение года в помещении за бетонной защитой, после чего был переработан.
После срабатывания системы аварийной сигнализации (САС) от первого пика мощности весь персонал был эвакуирован, часть его прошла медицинское обследование. САС имела детекторы в виде счетчиков Гейгера с порогами срабатывания 30 мкР/с. Четыре человека, находившихся на расстоянии около 10 м от сборника 64-В, облучились дозами от 6 до 17 рад. Не было разгерметизации оборудования, выбросов газоаэрозолей и загрязнения помещений. Остановка технологического процесса длилась не более 12 часов.
13. Сибирский химический комбинат, г. Северск, 2 декабря 1963 г
Высокообогащенный уран, U(90 %); накопление органики в вакуумной ловушке опасной геометрии; 16 слабых всплесков мощности в течение 16 часов; незначительное облучение.
В процессе переработки растворов урана с обогащением 90 % по 235U их передача из аппарата в аппарат или между технологическими установками производилась с помощью вакуумной системы. При этих операциях практически всегда имели место случайные поступления растворов в вакуумную систему в виде капель, брызг, стоков конденсата. Иногда, вследствие промахов оператора, аппараты переполнялись раствором, часть которого попадала в вакуумные линии. Для защиты вакуумной системы от попадания в нее технологических растворов, а также для контроля миграции растворов из аппаратов были установлены три ловушки на коллекторе вакуума. Первые две (NQ 696 и № 697 на рисунке 19) были рабочими и предназначались для сбора растворов из вакуумных линий. Третья ловушка (№ 694) была контрольной и предназначалась для приема растворов из первых двух в случаях их заполнения до определенного уровня. Все три ловушки имели полусферические днища и представляли собой одинаковые цилиндрические емкости опасной геометрии диаметром 500 мм и объемом до 100 литров.
В каждой ловушке был установлен электроконтактный датчик (сигнализатор уровня, СУ), который срабатывал при достижении раствором установленного уровня. В ловушках № 696 и № 697 этот уровень был примерно вдвое ниже, чем в ловушке № 694. При срабатывании сигнализатора уровня в ловушке № 696 или № 697 содержавшийся в ней раствор передавался в ловушку № 694. Процесс передачи заканчивался на уровне, который определялся положением конца погруженной в раствор трубки для его декантации. При срабатывании уровнемера в ловушке № 694 содержавшаяся в ней жидкость полностью передавалась на переработку.