Избранные научные труды. Том 1

На нашем литературном портале можно бесплатно читать книгу Избранные научные труды. Том 1, Бор Нильс Хенрик Давид-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Избранные научные труды. Том 1
Название: Избранные научные труды. Том 1
Дата добавления: 16 январь 2020
Количество просмотров: 582
Читать онлайн

Избранные научные труды. Том 1 читать книгу онлайн

Избранные научные труды. Том 1 - читать бесплатно онлайн , автор Бор Нильс Хенрик Давид

В первый том включены все основные работы Бора до 1925 г., т. е. до возникновения квантовой механики. Большинство статей тома посвящено первоначальной квантовой теории атома, прежде всего теории спектра атома водорода, теории периодической системы элементов, влиянию электрических и магнитных полей на спектральные линии, теории излучения.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Избранные научные труды. Том 1 - _14.jpg

Рис. 4

Исключительное положение элементов, заключённых в рамки, в отношении гомологичности отмечается на рис. 4 тем, что ни одна соединительная линия не проведена между такими элементами, которые занимают неодинаковое положение относительно рамок, несмотря на большое сходство многих из таких веществ в различных отношениях. В обычных изображениях периодической системы, например, отмечается прямо или косвенно большое сходство в химическом отношении алюминия и скандия: оба элемента определённо электроположительны и трёхвалентны. Это объясняется сходным строением трёхвалентных ионов этих элементов; на основании наших более детализированных представлений о строении атомов следует, однако, ожидать существенной разницы во многих физических свойствах алюминия и скандия, так как характер связи трёх последних электронов в обоих случаях весьма различен. Таким образом, например, непосредственно объясняется большое различие сериальных спектров алюминия и скандия. Несмотря на то, что спектр скандия ещё недостаточно изучен, можно утверждать, что указанное различие значительно более резко, чем, например, между дуговыми спектрами натрия и меди; эти последние спектры обладают совершенно аналогичной структурой, если только не обращать внимание на абсолютное значение спектральных термов, как это уже ранее отмечено в докладе.

В этой связи интересно указать, что при сравнении спектров двух элементов дальнейших периодов, занимающих различные положения в рамках или расположенных внутри одной и той же рамки, следует ожидать характерных отклонений от различных простых правил, описывающих изменения структуры спектров в пределах первых трёх периодом системы. Интересные данные по этому вопросу содержатся в статье Каталина, недавно появившейся в Proceedings of Royal Society. Ему удалось обнаружить как в дуговых, так и в искровых спектрах марганца системы серий с отклонениями от тех законов, которые имеют силу для остальных, разобранных до сих пор спектров. Подобные отклонения и следует ожидать на основании тех соображений, которые приведены для объяснения происхождения группы железа в четвертом периоде; наличие этих отклонений можно рассматривать как веское подтверждение развитых воззрений.]1

1 Предшествующие три абзаца добавлены в сб.: «Drei Aufsätze...».— Прим. ред.

Прежде чем оставить вопрос об истолковании химических свойств элементов на основании нашей модели атома, мне хотелось бы ещё раз напомнить, что изложенные соображения основаны на изучении с помощью квантовой теории тех процессов, которые связаны с образованием атома путём последовательного присоединения электронов. Исходная точка зрения, положенная в основу этого исследования, находит свое выражение в так называемом принципе соответствия. За применениями квантовой теории этот принцип позволяет подозревать внутреннюю связь того же типа, что и внутренняя связь в классической электродинамике; несмотря на обширность области применения электродинамики, она не в состоянии объяснить устойчивость атома, проявляющуюся в свойствах элементов. Изложенные здесь соображения, конечно, можно углубить во многих пунктах дальше. Но мы ещё не можем утверждать, что результаты, содержащиеся в приведённой выше таблице, должны рассматриваться во всех деталях как единственный возможный результат применения принципа соответствия. С другой стороны, изложенные соображения настолько объясняют эмпирические данные, что едва ли возможна существенно отличная интерпретация свойств элементов на основании постулатов квантовой теории. Сказанное относится не только к сериальным спектрам и их тесной связи с химическими свойствами элементов, которую мы получили при рассмотрении образования атомов, но также в большой степени и к рентгеновским спектрам, анализ которых приводит к изучению внутриатомных процессов совершенно иного рода. Надо думать, как мы уже говорили, что излучение рентгеновских спектров связано с процессами перестройки уже сформированного атома, происходящими в результате возмущений, вызываемых внутри атома внешними силами.

ЧАСТЬ ЧЕТВЕРТАЯ

Точно так же, как и в сериальных спектрах, частоты колебаний отдельных линий рентгеновских спектров можно рассматривать как разности (комбинации) ряда спектральных термов, характерных для данного вещества. Согласно общему условию частот (1) в квантовой теории, мы можем считать, что каждая рентгеновская линия соответствует излучению при переходах между двумя стационарными состояниями атома. Значение энергии, соответствующее стационарному состоянию атома, часто называется «энергетическим уровнем», относящимся к рентгеновским спектрам. Однако имеется большое различие в природе рентгеновских спектров и сериальных спектров, как мы об этом говорили в начале доклада; разница проявляется в различии законов, управляющих поглощением излучения в рентгеновской и оптической областях спектра. В оптической области поглощение невозбуждённых атомов связано с такими линиями сериального спектра, которые получаются комбинацией двух спектральных термов, один из которых является более высоким термом данного спектра. Поэтому поглощение приходится связывать с таким процессом, который переводит электрон с орбиты нормального состояния в атоме на орбиту, соответствующую одной из ранних стадий процесса связывания. С другой стороны, поглощение рентгеновских лучей относится не к самим линиям рентгеновского спектра, а к определённым спектральным областям, как это в особенности следует из исследований Вагнера и де Бройля. Эти области начинаются у так называемых кантов полосы поглощения, частоты колебаний которых соответствуют, во всяком случае в хорошем приближении, термам, комбинация которых даёт линии спектра излучения. Поэтому приходится думать, что атом при поглощении может быть переведён из нормального состояния в любое из стационарных состояний, соответствующее указанным выше уровням энергии, между которыми происходят переходы, сопровождающиеся излучением рентгеновских линий. Мы увидим, что изложенное выше представление о строении атомов позволяет дать простое толкование этих соотношений. При этом мы поставим следующий вопрос: какие изменения в состоянии атома могут быть вызваны поглощением и какие процессы излучения могут подготовляться такими изменениями?

Возможность изменения движения внутреннего электрона в атоме при освещении связана прежде всего самым тесным образом с характером взаимодействия электронов внутри каждой группы. Мы определили эти группы, изучая возможное образование атома путём последовательного связывания электронов. В отличие от форм движения, в которых положения электронов в любой момент обладают симметрией многоугольника или многогранника, характер движения в наших группах таков, что, вообще говоря, каждая гармоническая компонента движения электронов представлена в общем электрическом моменте атома. Благодаря этому имеется возможность отделить движение электрона от влияния других электронов той же группы при процессе, обладающем необходимым соответствием с нашими обычными представлениями о процессе поглощения. Исходная точка зрения, положенная нами в основу интерпретации развития и завершения электронных групп при образовании атома, приводит далее к выводу, что изменение состояния атома, происходящее при поглощении или излучении света, не может привести к включению нового электрона в какую-либо завершённую группу атома. Это значит, что при поглощении электрон внутренней группы может перейти только в ещё незаконченную группу или же попасть на такую орбиту, на которой электрон большую часть своего пути находится на значительном удалении от других электронов (мы не говорим о случае полного удаления электрона из атома). На основании своеобразных условий устойчивости, управляющих незаконченными группами внутри атома, энергия, необходимая для перевода электрона в одну из таких групп, всегда будет очень мало отличаться от той энергии, которая необходима для удаления электрона из атома. Поэтому энергетические уровни, соответствующие кантам полосы поглощения, дают возможность в первом приближении определить работу, необходимую для удаления из атома электрона внутренней группы. Наша исходная точка зрения позволяет также понять наблюдения, относящиеся к эмиссионным линиям рентгеновских спектров, появляющимся при переходах между состояниями атома, соответствующими указанным энергетическим уровням. Описанный выше тип взаимодействия электронов в группах атома влечёт за собой, так сказать, готовность каждого электрона в атоме независимо от остальных электронов той же группы воспользоваться всякой возможностью упрочения связи и перейти в группу с меньшими значениями главного квантового числа. Такая возможность возникает при удалении электрона из внутренней группы, как это следует на основании наших представлений о строении атома.

Перейти на страницу:
Комментариев (0)
название