Жизнь как она есть: её зарождение и сущность
Жизнь как она есть: её зарождение и сущность читать книгу онлайн
Книга известного английского физика и биохимика, лауреата Нобелевской премии в области физиологии, посвящена одной из самых больших тайн природы: зарождению жизни. Автор предлагает и обосновывает необычную гипотезу внеземного происхождения жизни.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
ДНК и РНК довольно похожи, они, можно сказать, молекулярные кузины, поэтому давайте сначала опишем ДНК, а затем то, чем отличается от нее РНК. Одна цепочка ДНК состоит из единообразного остова, последовательности атомов, повторяющейся снова и снова, с присоединенной при каждом повторе боковой группой. Химически в остове содержатся ...фосфат-сахар фосфат-сахар... и т.д., и так повторяется многие тысячи или даже миллионы раз. Сахар — это не тот сахар, что стоит у вас на обеденном столе, а более мелкий, который называется дезоксирибоза, то есть рибоза с одной отсутствующей «окси»-группой (следовательно, название ДНК означает Дезоксирибонуклеиновая Кислота; «нуклеиновая» — потому что найдена в ядре высших клеток, «кислота» — из-за фосфатных групп, каждая из которых в нормальных условиях несет отрицательный заряд). К каждому сахару присоединена одна боковая группа. Боковые группы различны, но всего насчитывается лишь четыре их основных типа. Эти боковые группы ДНК (по формальным причинам называемые основаниями) удобно обозначить по первым буквам их названий А, Г, Т и Ц (что означает, соответственно, Аденин, Гуанин, Тимин и Цитозин). Благодаря своему точному размеру и форме, а также характеру химических составляющих, А изящно соединится в пару с Т, а Г — с Ц. (А и Г большие, Т и Ц поменьше, поэтому каждая пара состоит из одного большого и одного малого оснований.)
Пары оснований, которые образуют секрет структуры ДНК Основания соединены слабыми водородными связями, показанными прерывистыми линиями Тимин всегда объединяется с аденином; цитозин с гуанином.
И ДНК, и РНК довольно легко образуют двуцепочечные структуры, в которых обе цепочки лежат рядом, бок о бок, переплетаясь друг с другом для образования двойной спирали и связанные воедино своими основаниями. На каждом уровне существует одна пара оснований, образованная основанием одной цепочки, спаренного (на основе правил спаривания) с основанием другой. Каждая из связей, соединяющая эти пары друг с другом, довольно слаба, хотя в совокупности они образуют достаточно устойчивую двойную спираль. Но если структура нагревается, то возросшее тепловое возбуждение оттолкнет цепочки в сторону с тем, чтобы они разделились и отплыли друг от друга в окружающей их воде.
Генетическое сообщение передается точной последовательностью оснований вдоль одной цепочки. Тогда, зная эту последовательность, можно считывать последовательность ее комплементарной соседки, используя правила спаривания оснований (А с Т, Г с Ц). Генетическая информация записывается дважды, один раз на каждой цепочке. Это может оказаться полезным, если одна из цепочек повреждена, поскольку ее можно восстановить, используя информацию — последовательность оснований — другой цепочки.
Здесь есть одна неожиданная особенность. В обычной двойной спирали оба остова обеих цепочек не приблизительно параллельны, а антипараллельны. Если последовательность атомов в одном остове быстро увеличивается, то во втором — уменьшается. Это приводит к определенным сложностям, но не таким значительным как можно ожидать. По сути, это вытекает из того типа симметрии, которым обладает двойная спираль. Он создается псевдосимметрией спаривания оснований. Оказывается, что для этих конкретных химических соединений это удобный способ точно совпадать друг с другом.
Легко понять, что молекула такого типа, состоящая из пары цепочек, нерегулярные элементы которых (основания) совпадают друг с другом, идеальна для молекулярной репликации, особенно потому, что обе цепочки можно довольно легко отделить друг от друга щадящими методами Это происходит потому, что связи внутри каждой цепочки, скрепляющие каждую цепочку, являются прочными химическими связями, довольно невосприимчивыми к обычному тепловому разрушению, тогда как обе цепочки удерживаются вместе довольно слабыми связями, так что их можно без значительных затруднений отодвинуть друг от Друга, не нарушив при этом остов каждой из них. Две цепочки ДНК подобны двум любовникам, они удерживают друг друга в тесных объятиях, но их можно разделить, потому что как бы тесно они ни соприкасались друг с другом, у каждой есть единство, которое сильнее связей, их объединяющих.
Поскольку они столь точно совпадают друг с другом, то одну цепочку можно считать матрицей другой. Основной механизм репликации очень просто понять. Обе цепочки разделяются. Затем каждая цепочка действует как шаблон для сборки новой парной цепочки, используя в качестве сырья запас из четырех стандартных элементов. Когда эта операция завершится, мы будем иметь две пары цепочек вместо одной, и поскольку для того, чтобы выполнить работу аккуратно, сборка должна подчиняться правилам спаривания оснований (А с Т, Г с Ц), то последовательности оснований обязательно будут точно скопированы. В итоге мы получим две двойные спирали, где раньше имели лишь одну. Каждая дочерняя двойная спираль будет состоять из одной старой цепочки и одной вновь синтезированной цепочки, точно совпадающих друг с другом, и что более важно, последовательности оснований этих двух дочерних цепочек окажутся идентичными последовательности первоначальной родительской ДНК.
Основная идея вряд ли может быть проще. Единственная довольно неожиданная особенность заключается в том, что обе цепочки не идентичны, а комплементарны. Можно представить даже еще более простой механизм, в котором одинаковое спаривается с одинаковым с тем, чтобы обе парные цепочки оказались идентичными, но характер химических взаимодействий, скорее, несколько облегчает точное соответствие друг другу комплементарным молекулам, нежели абсолютно идентичным.
Как подобный процесс выдерживает сравнение с более крупными механизмами копирования, распространенными сегодня? Строка набора, подготовленная для печати, состоит (или обычно состояла) из определенного числа стандартных символов, организованных в строку или ряд строк. У каждой буквы в этом шрифте есть одинаковый для всех букв стандартный элемент, который вставляется в бороздки, удерживающие эту литеру на месте, и элемент, который характерен для каждой буквы. На этом сходство кончается. В репликации ДНК нет ничего, что соответствовало бы полиграфической краске. Буквы, напечатанные на листе, являются зеркальными изображениями очка литеры, но не комплементом (который остаётся, когда очко литеры вошло), и, что самое важное, получившуюся на печати строчку нельзя потом вернуть на место в ту же машину, чтобы воспроизвести очко литеры. Печатные прессы выпускают многие тысячи экземпляров газет, но газеты не копируются обратно в набор.
Репликация ДНК совсем не такая. Для того чтобы заработал естественный отбор, важно, чтобы саму эту копию можно было скопировать. Репликация ДНК больше похожа на отливку фрагмента скульптуры из литейной формы, так как если она достаточно простая, то саму скульптуру можно использовать для создания дополнительной формы. Основная разница заключается в том, что нить ДНК строится лишь из четырех стандартных отрезков. Очевидно, что это не относится к большинству фрагментов скульптуры.
Если мы исследуем процесс репликации ДНК, то увидим, что здесь есть ряд основных требований. Если мы начнем с двойной спирали, то обе цепочки должны каким-то образом разделяться. В наличии должен иметься запас из четырех элементов, каждый из которых состоит из характерного участка остова, — одна молекула сахара объединяется с одной молекулой фосфата, — и включает одно из четырех оснований, присоединенное к сахару. Такая состоящая из трех частей молекула называется нуклеотид. На практике эти первичные элементы имеют не просто один фосфат, а три, расположенные в ряд, причем два других отделяются в процессе полимеризации, предоставляя таким образом энергию для проведения синтеза в желаемом направлении. Хотя можно представить процесс, проходящий без дополнительных элементов, в развитой системе мы непременно рассчитываем обнаружить, по крайней мере, один фермент (то есть белок с каталитической активностью), который ускорит синтез и сделает его более точным.