История физики
История физики читать книгу онлайн
В книге рассматривается вопрос о возникновении физической науки, развитие ее методов и идей. Перевод с немецкого Т. Н. Горнштейн.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
цуэские, стали исследовать вновь открытую область, и в течение двух лет были созданы основы электромагнетизма. Сначала Доминик Франсуа Араго (1786-1853) и Жозеф Луи Гей-Люссак (1778-1850) наблюдали намагничивание куска железа под влиянием тока, проходящего по проволоке, намотанной на железо. Это был первый электромагнит. В том же году Андре Мари Ампер (1775-1836) установил свое знаменитое правило пловца для определения направления магнитного силового поля по отношению к проводнику тока и нашел, что одинаково направленные токи притягиваются, а противоположно направленные - отталкиваются. Он показал, что соленоид действует как магнитный стержень. Одновременно Жан Батист Био (1774-1862) и Феликс Савар (1791-1841) на основании результатов опыта сформулировали названный по их имени закон магнитного действия отдельного элемента тока. Фарадей в 1821 г. подверг действию постоянных магнитов подвижные части цепи тока и, наоборот, магниты действию токов. После этого в 1822 г. Ампер показал взаимодействие двух электрических цепей тока и принял его за исходный пункт для своего основного закона электродинамики - термин, который впервые появляется именно у него. Особенное значение имело, правда только через столетие, его объяснение магнетизма уже не посредством двух магнитных флюидов, но действием гипотетических молекулярных токов (1821-1822).
Из этих магнитных действий тока была получена мера для силы тока. В 1826 г. Симон Ом (1787-1854) при помощи ясного разделения понятий «электродвижущая сила», «уровни напряжения», «сила тока» вывел названный по его имени закон пропорциональности между силой тока и разностью напряжений, причем коэффициент пропорциональности означал сопротивление проводника. Ом показал, что сопротивление
проволоки пропорционально длине и обратно пропорционально ее сечению, и заложил этим основы для понятия удельной электропроводности тел. Но это только одна из трех констант, которые характеризуют поведение любого вещества в отношении электричества и магнетизма.
В 1847 г. Р. Кирхгоф (1824-1887) смог разрешить проблему разветвления тока путем установления правил, названных по его имени.
Важнейшее применение электродинамика нашла в телеграфе. В 1833 г. Гаусс и Вильгельм Вебер (1804-1891) дали принцип функционирования телеграфа по одной линии.
После 1822 г. наступил перерыв в развитии электромагнетизма, хотя до этого была исследована только половина этой группы явлений.
В 1831 г. Фарадей открыл, что действию токов на магнит соответствует обратное действие магнита на ток. Он наматывал на железное кольцо две катушки из проволоки и пропускал ток через первую катушку; сразу же после включения тока в первой катушке возникал ток во второй; при выключении тока в первой катушке во второй появлялся ток противоположного направления. Тем самым была открыта индукция, и Фарадей в последующие годы выяснил ее различные формы. В 1833 г. его несколько неясные указания о направлении индуцированных движений токов Э. X. Ленц (1804-1865) соединил в правило, названное по его имени. Вскоре появились индукционные машины, которые вырабатывали электрический ток без применения гальванических элементов. Но особенно большой подъем в этой области начался после 1867 г., когда В. Сименс (1816-1892) заменил используемые в индукционных машинах стальные магниты электромагнитами, которые питались вырабатываемым этими маши-
нами током; именно в этом заключается динамоэлек-трический принцип.
Электродинамика дала возможность установить вторую, независимую от закона Кулона, систему мер. Можно, например, в качестве единицы силы тока выбрать такой ток, который, протекая в длинном проводнике на расстоянии одного сантиметра от второго такого же проводника с таким же током, действует на единицу длины последнего с силой в одну дину. Эта электромагнитная единица такова, что равная ей сила тока в течение единицы времени дает конденсатору единицу количества электричества. Это с необходимостью привело к вопросу об отношении к электростатической единице, определенной законом Кулона. Из соответствующих формул увидели, что это отношение имеет размерность скорости. Его значение измерил в 1852 г. Вильгельм Вебер (1804-1891) с удивительным результатом: это есть скорость света, равная 3 • 1010см/сек. Джемс Клерк Максвелл (1831-1879) проверил этот результат в 1868-1869 гг. с более высокой точностью, так как это имело основополагающее значение для электромагнитной теории света. В дальнейшем определение этого отношения было так усовершенствовано, что и сейчас считается точным измерением скорости света.
Применяемые в настоящее время в технике электрические единицы - ампер, ом, вольт и др. - были установлены в 1881 г. Интернациональным конгрессом в Париже. В то время, в силу недостаточного предвидения развития техники, не решались принять электромагнитную единицу силы тока как техническую единицу, так как она казалась непрактично большой, и определили ампер как 1/10 этой единицы.
Во всех упомянутых до сих пор измерениях имели дело с токами в металлических проводниках. В 1872 г. Генри Роуланд (1848-1901) показал, что конвекционные токи статических зарядов на движущихся телах оказывают точно такое же магнитное действие.
Открытия электродинамики поставили теорию перед задачами, которые в отличие от всех прежних задач не могли быть разрешены рассмотрением центральных сил, действующих между материальными точками и зависящих только от расстояния. Ампер и Франц Эрнст Нейман (1798-1895) и прежде всего Вильгельм Вебер разработали новую теорию. Основной закон Вебера (1846) охватил все, что тогда знали об электричестве, допущением, что сила между двумя зарядами зависит не только от расстояния, но также от скорости и ускорения, что токи являются движущимися зарядами. До 1890 г. закон Вебера играл большую роль в науке. Но все эти теории страдали тем недостатком, что они допускали дальнодействие. Поскольку была признана конечная скорость распространения электрических действий, они лишались почвы. Они свидетельствуют еще сегодня о том, как тяжел был путь познания в этой области, к каким большим изменениям всех физических воззрений он привел.
Вождем в разработке правильного понимания электрических и магнитных явлений был Михаил Фарадей. В 1837 г. он обнаружил влияние диэлектриков на электростатические явления; в 1846 и в последующие годы он показал общую распространенность диамагнитных свойств в природе, в то время как парамагнетизм является исключением. Тогда же у него возникло представление, что электрические и магнитные действия не непосредственно идут от тел к телам, а переносятся через лежащий между ними диэлектрик, который становится местом электрического или магнитного «поля», - это понятие также введено Фарадеем. Указанное воззрение развивалось постепенно в процессе его экспериментов.
«Этим объясняется то, что в опубликованных работах он выражает свои идеи в форме, особенно приспособленной для возникающей науки. В самом деле, его манера писания значительно отличается от манеры тех физиков, которые, как Ампер, были призваны облечь ее идеи в математическую форму». Так оценивает
Джемс Клерк Максвелл *) работы Фарадея и несколько дальше он продолжает: «Может быть для науки является счастливым обстоятельством то, что Фарадей не был собственно математиком, хотя он был в совершенстве знаком с понятиями пространства, времени и силы. Поэтому он не пытался углубляться в интересные, но чисто математические исследования, которых требовали его открытия. Он был далек от того, чтобы облечь свои результаты в математические формулы, либо в те, которые одобрялись современными ему математиками, либо в те, которые могли дать основание новым начинаниям. Благодаря этому он получил досуг, который требовался ему для работы, соответствующей его духовному направлению, смог согласовать идеи с открытыми им фактами и создать если не технический, то естественный язык для выражения своих результатов». О своих собственных исследованиях Максвелл прибавляет следующее: «Я предпринял специально эту работу в надежде, что мне удастся придать его (т. е. Фарадея) идеям и методам математическое выражение».