-->

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии

На нашем литературном портале можно бесплатно читать книгу Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии, Бродянский Виктор Михайлович-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Название: Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
Дата добавления: 16 январь 2020
Количество просмотров: 289
Читать онлайн

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии читать книгу онлайн

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - читать бесплатно онлайн , автор Бродянский Виктор Михайлович

В популярной форме рассказывается об истории вечного двигателя от первых попыток его создания до современных изобретений . Раскрывается значение для энергетики двух фундаментальных законов — первого и второго начал термодинамики. Показана бесполезность попыток обойти эти законы независимо от сложности предлагаемых для этого устройств.

Для широкого круга читателей, интересующихся историей техники и ее современными проблемами.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 7 8 9 10 11 12 13 14 15 ... 63 ВПЕРЕД
Перейти на страницу:

Эта идея о невозможности получения работы «из ничего» (например, «мертвой воды») была развита потом Р. Декартом и другими мыслителями; в конечном итоге она привела к установлению всеобщего закона сохранения энергии. Но все это произошло намного позже. Пока же изобретатели гидравлических ppm разрабатывали все новые их варианты, объясняя каждый раз свои неудачи теми или иными частными недоработками.

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - i_023.png
Рис. 1.21. «Типовой» гидравлический двигатель

Классическим примером гидравлического ppm может служить машина, показанная на рис. 1.21. Более сложный вариант такого двигателя (рис. 1.22), используемого в практических целях, взят из книги Г. Беккера «Новый театр машин» изданной в Нюренберге (1661). Этот двигатель, предназначенный для вращения точильного камня, был предложен итальянцем Якобом де Страда в 1575 г. (по другим источникам — в 1629 г.). Из нижнего водоема S винтовой насос О шестерней, приводимой в движение от зубчатого колеса R, перекачивает воду в верхний лоток. Отсюда она сливается на колесо С, приводящее через вал D в движение точильный камень. Через сложную систему передач (червяк и зубчатые колеса Е, G, L и К) колесо С приводит в движение и насос О. Для равномерности движения на вертикальном валу установлен маховик К.

Автор настолько уверен, что в поток А вода подается с избытком и ее хватит на все нужды, что через трубку Р сливает часть ее на смачивание точильного камня, у которого работает мастер. Здесь сделано все, что может предусмотреть опытный конструктор. Но в машине, которую он назвал «искусство верчения и кручения с двойной передачей», не учтено только одно обстоятельство: насос никогда не сможет поднять наверх столько воды, сколько нужно для рабочего колеса. Опыт каждый раз именно это и показывал.

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - i_024.png
Рис. 1.22. Гидравлический двигатель для привода точильного камня

Одно из ухищрений, призванных обойти трудности, состояло в том, чтобы заставить воду подниматься (и сливаться) в меньшем перепаде высот. Для этого предусматривалась каскадная система из нескольких последовательно соединенных насосов и рабочих колес. Такая машина, описанная в книге уже известного нам Д. Уилкинса, показана на рис. 1.23. Подъем воды осуществляется винтовым насосом, состоящим из наклонной трубы АВ, в которой вращается ротор LM, показанный внизу отдельно. Он приводится в движение тремя рабочими колесами H, I, К, вода на которые подается из трех расположенных каскадом сосудов Е, F, G. В оценке этого двигателя Уилкинс, как и в описанных ранее случаях, оказался на высоте. Он не только отверг этот двигатель из общих соображений, но даже подсчитал, что для вращения спирали «нужно втрое больше воды для вращения, чем то количество, которое она подает наверх».

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - i_025.png
Рис. 1.23. Трехступенчатый каскадный гидравлический ppm с одним архимедовым винтом 

Отметим, что Уилкинс, как и многие его современники, начал заниматься механикой и гидравликой с попыток изобрести вечный двигатель. Еще один пример стимулирующего действия ppm-1 на науку того времени!

«В первый раз, когда я подумал об этом изобретении, я с трудом удержался от того, чтобы подобно Архимеду не закричать «эврика».

Казалось, что, наконец, найдено легкое средство реализовать вечный двигатель», — писал он в 1684 г., вспоминая свои попытки создать гидравлический ppm из водяного колеса и винта Архимеда для подъема воды. Однако под влиянием экспериментальных неудач он нашел в себе силы провести теоретический анализ и перейти от беспочвенных фантазий к научному анализу.

Уилкинс дал первую классификацию способов построения вечных двигателей:

1) с помощью химической экстракции (эти проекты до нас не дошли);

2) с помощью свойств магнита;

3) с помощью сил тяжести.

Гидравлические ppm он относил (и совершенно правильно) к третьей группе.

В итоге Уилкинс написал четко и однозначно: «Я пришел к выводу, что это устройство не способно работать». Этот любитель науки — епископ — дал в XVII в. достойный пример того, как надо преодолевать заблуждения и находить истину. Если бы ему следовали дипломированные изобретатели ppm XX в.!

Среди других гидравлических ppm следует отметить машину польского иезуита Станислава Сольского, который для приведения в движение рабочего колеса использовал ведро с водой. В верхней точке насос наполнял ведро, оно опускалось, вращая колесо, в нижней точке опрокидывалось и пустое поднималось вверх; затем процесс повторялся. Королю Казимиру эта машина, которую патер демонстрировал в Варшаве (1661 г.), очень понравилась. Однако даже светские успехи титулованных изобретателей не могли скрыть того факта, что гидравлические ppm системы «насос — водяное колесо» на практике не работали. Нужны были новые идеи, используя которые, можно было бы поднять воду с нижнего уровня на верхний без затраты работы, не применяя механический насос. И такие идеи появились — как на основе использования уже известных явлений, так и в связи с новыми физическими открытиями.

Первая из идей, о которой нужно вспомнить, — использование сифона. Это устройство, известное еще с античных времен (оно упоминается у Герона Александрийского), использовалось для переливания воды или масла из сосуда, расположенного выше, в другой, расположенный ниже (рис. 1.24, а). Преимущество такого простого устройства, используемого и до сих пор, заключается в том, что можно отбирать жидкость из верхнего сосуда сверху, не делая отверстия в его дне или стенке. Единственное условие работы сифона — полное предварительное заполнение трубки жидкостью. Поскольку между верхним и нижним сосудами существует разность уровней, высота столба жидкости в длинном колене трубки больше, чем в коротком, на величину Н. Естественно, что жидкость будет самотеком переливаться из верхнего сосуда в нижний.

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - i_026.png
Рис. 1.24. Принцип действия сифонного гидравлического ppm: a — обычный сифон; б — «обратный» сифон с расширенным верхним коленом

Возникает вопрос — как же можно использовать сифон для подъема воды, если его назначение обратное — слив воды? Однако именно такая парадоксальная идея была выдвинута около 1600 г. и описана в книге «Новый театр машин и сооружений» (1607 г.) городским архитектором Падуи (Италия) Витторио Зонка. Она заключалась в том, чтобы сделать верхнее, короткое колено сифона толще — больше по диаметру (D » d), как показано на рис. 1.24, б. В этом случае, считал Зонка, вода в левом, толстом колене, несмотря на его меньшую, высоту перевесит воду в тонком колене и сифон потянет ее в противоположном направлении — из нижнего сосуда в верхний. Он писал: «Сила, которая проявляется в толстом колене, будет тянуть то, что входит через более узкое колено». На этом принципе и должен был работать ppm Зонки, показанный на рис. 1.25. Сифон забирал воду из, нижнего водоема справа в узкую трубу (правое колено сифона); вода из широкой трубы (левое колено сифона) сливалась в сосуд, расположенный выше водоема, откуда она подавалась на водяное колесо и сливалась снова в водоем. Колесо через вал вращало мельничный жернов. 

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - i_027.png
Рис. 1.25. Сифонный гидравлический ppm В. Зонки для привода мельницы

Эта оригинальная машина, естественно, работать не смогла, так как по законам гидравлики направление движения жидкости в сифоне зависит только от высот столбов жидкости и не зависит от их диаметра. Однако во времена Зонки об этом четкого представления у практиков не было, хотя уже в работах Стевина по гидравлике вопрос о давлении в жидкости был решен. Он продемонстрировал (1586 г.) «гидростатический парадокс» — давление в жидкости зависит только от высоты ее столба, а не от ее количества. Широко известным это положение стало позже, когда аналогичные опыты были вновь и более широко поставлены Блезом Паскалем (1623-1662 гг.). Но и они не были поняты многими инженерами и учеными, по-прежнему считавшими, что чем шире сосуд, тем больше давление содержащейся в нем жидкости. Жертвами подобных заблуждений были иногда даже люди, работавшие на самом переднем крае современной им науки и техники. Примером может служить сам Дени Папин (1647-1714 гг.) — изобретатель не только «папинова котла» и предохранительного клапана, но и центробежного насоса, а главное — первых паровых машин с цилиндром и поршнем. Папин даже установил зависимость давления пара от температуры и показал, как получать на ее основе и вакуум, и повышенное давление. Он был учеником Гюйгенса, переписывался с Лейбницем [9] и другими крупными учеными своего времени, состоял членом английского Королевского общества и Академии наук в Неаполе. И вот такой человек, который по праву считается крупным физиком и одним из основоположников современной теплоэнергетики (как создатель парового двигателя), работает и над вечным двигателем! Мало этого, он предлагает такой ppm, ошибочность принципа которого была совершенно очевидна и современной ему науке. Он публикует этот проект в журнале «Философские труды» (Лондон, 1685 г.).

1 ... 7 8 9 10 11 12 13 14 15 ... 63 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название