-->

Курс истории физики

На нашем литературном портале можно бесплатно читать книгу Курс истории физики, Степанович Кудрявцев Павел-- . Жанр: Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Курс истории физики
Название: Курс истории физики
Дата добавления: 16 январь 2020
Количество просмотров: 399
Читать онлайн

Курс истории физики читать книгу онлайн

Курс истории физики - читать бесплатно онлайн , автор Степанович Кудрявцев Павел
Курс истории физики

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

В 1890 г. Герц опубликовал две статьи: «Об основных уравнениях электродинамики в покоящихся телах» и «Об основных уравнениях электродинамики для движущихся тел». Эти статьи содержали исследования о распространении «лучей электрической силы» и в сущности давали то каноническое изложение максвелловской теории электрического поля, которое вошло с тех пор в учебную литературу.

В первой из этих статей Герц указывает, что теория Максвелла при своем зарождении была загромождена «лесами» (имеется в виду образ строительных лесов), которые необходимо было убрать. К числу таких лесов он относил и «господство вектор-потенциала в основных уравнениях». Его основные уравнения связывают непосредственно компоненты напряженностей электрических и магнитных полей, именно эти уравнения мы называем теперь «уравнениями Максвелла». Герц считает их фундаментальными законами, не выводимыми из каких-либо других фундаментальных принципов или с помощью воображаемых механизмов.

Во второй статье Герц для получения уравнений электродинамики движущихся тел делает основное предположение, что эфир, находящийся внутри движущейся материи, движется одновременно с ней. Эта гипотеза полного увлечения эфира самым естественным образом объясняет отрицательный результат опыта Майкельсона. Однако она противоречит другим фактам: аберрации, опыту физо, опытам Рентгена и Эйхенвальда в электродинамике. Лоренц рассматривает оптические опыты в указанной выше статье, а также в большой программной работе 1895 г. «Опыт теории оптических и электрических явлений в движущихся телах». Этими работами Лоренц закладывает основы электронной теории.

Гендрик Антон Лоренц родился 18 июля 1853 г. в небольшом голландском городе Арнхеме. Он учился в Лейденском университете, где в 1875 г. получил докторскую степень. Здесь он занимал пост профессора специально для него учрежденной кафедры теоретической физики. В 1912 г. Лоренц ушел на должность экстраординарного профессора кафедры и предложил своим преемником жившего тогда в России П. С. Эренфеста. Эренфест заведовал кафедрой в Лейдене с осени 1912 г. до своей трагической кончины осенью 1933 г. Лоренц в 1923 г. занял должность директора научного института в Гарлеме. С момента учреждения Сольвеевского фонда Лоренц был неизменным председателем Сольвеевских конгрессов. Скончался Лоренц 4 февраля 1928 г.

Курс истории физики - img_211.jpeg

В историю физики Лоренц вошел как создатель электронной теории, в которой синтезировал идеи теории поля и атомистики. Идея атома электричества, как мы знаем, начинается с фара-дея, с его законов электролиза.

Максвелл в своем «Трактате» также приходит к идее атомного, или, как он выражается, молекулярного, заряда. Этот заряд он называет «молекулой электричества» и пишет, что «эта теория молекулярных зарядов может служить для выражения большого числа фактов электролиза; но,— добавляет Максвелл, — мало вероятно, чтобы к тому времени, когда мы познаем истинную природу электролиза, мы сохраним хоть что-нибудь из теории молекулярных зарядов; тогда у нас будет твердая основа для того, чтобы создать истинную теорию электрического тока и освободиться от этих представлений».

Максвелл полагал, что в будущем полевые представления сделают излишними представления о дискретности заряда. Он ошибся. Наука сохранила и развила представление об атомности электричества. В 1874 г. ирландский физик Джонсон Стоней (1826—1911) самым решительным образом высказался в защиту представления об элементарном заряде. В докладе «О физических единицах природы», прочитанном на съезде Британской ассоциации в Белфасте, он говорил: «Наконец, природа дает нам одно, вполне определенное количество электричества, независимое от рассматриваемых тел. Чтобы выяснить это, я формулирую закон Фарадея в следующих выражениях, которые, как я покажу, придадут ему ясность. На каждую химическую связь, разорванную внутри электролита, приходится определенное, всегда одинаковое количество электричества, прошедшее через электролит. Это определенное количество электричества я назову E1. Если мы примем его за единицу электричества, мы, вероятно, сделаем весьма большой шаг в изучении молекулярных явлений». Позднее (1891) Стоней ввел название «электрон» для величины E1.

В 1881 г. Гельмгольц в речи, посвященной фарадею, высказал его идею об атомности электричества в четко определенной форме: «Если мы допускаем существование химических атомов, то мы принуждены заключить отсюда далее, что также и электричество, как положительное, так и отрицательное, разделяется на определенные элементарные количества, которые играют роль атомов электричества». Это элементарное количество электричества Гельмгольц назвал электрическим зарядом иона. Стоней указал на свой приоритет в интерпретации закона Фарадея, однако, как мы видели, приоритет принадлежит самому фарадею.

Следует отметить, что речь Гельмгольца сыграла очень важную роль в развитии представления об электрическом заряде, она фигурировала в многочисленных статьях и книгах как первоисточник этого представления, и, может быть, большая популярность Гельмгольца была причиной того, что собственные высказывания фарадея были по существу забыты.

Лоренц начал вводить в теорию электричества атомистику еще в ранних своих работах. В теории Максвелла свойства среды, в которой разыгрываются электромагнитные и оптические явления, описываются феноменологически коэффициентами, определяемыми из опыта. Лоренц уже в докторской диссертации (1875) «Об отражении и преломлении лучей света» пытается обосновать изменение в скорости распространения света в среде влиянием наэлектризованных частичек тела. Под действием световой волны заряды молекул приходят в колебательное движение и становятся источниками вторичных электромагнитных волн. Эти волны, интерферируя с первичными, и обусловливают преломление и отражение света. Здесь уже намечены те идеи, которые приведут к созданию электронной теории дисперсии света.

В следующей статье — «О соотношении между скоростью распространения света и плотностью и составом среды», опубликованной в 1878 г., Лоренц выводит знаменитое соотношение между показателем преломления и плотностью среды, известное под названием «формулы Лоренц — Лоренца», поскольку датчанин Л. Лоренц независимо от Гендрика Лоренца пришел к тому же результату. В этой работе Лоренц развивает электромагнитную теорию дисперсии света с учетом того, что на молекулярный заряд, кроме поля волны, действует поле поляризованных частиц среды.

В 1892 г. Лоренц выступил с большой работой «Электромагнитная теория Максвелла и ее приложение к движущимся телам». В этой работе уже намечены основные контуры электронной теории. Мир состоит из вещества и эфира, причем Лоренц называет веществом «все то, что может принимать участие в электрических токах, электрических смещениях и электромагнитных движениях». «Все весомые тела состоят из множества положительно и отрицательно заряженных частиц, и электрические явления порождаются смещением этих частиц».

Лоренц выписывает далее выражение силы, с которой электрическое поле действует на движущийся заряд. В векторной форме и в гауссовых единицах сила, действующая на единицу объема заряженного тела (плотность силы) со стороны поля, равна:

Курс истории физики - img_212.jpeg

Лоренц делает фундаментальное предположение — эфир в движении вещества участия не принимает (гипотеза неподвижного эфира). Это предположение прямо противоречило гипотезе Герца о полностью увлекаемом движущимися телами эфире. В предположении о неподвижном эфире Лоренц выводит, что скорость света в движущемся теле с показателем преломления v равна:

Курс истории физики - img_213.jpeg

где ω 0 — скорость света в покоящемся теле, р —скорость движения тела.

Множитель

Курс истории физики - img_214.jpeg

есть в точности коэффициент увлечения, который был введен Френелем в теории аберрации и который был подтвержден опытами физо, Майкельсона и Морли.

Перейти на страницу:
Комментариев (0)
название