Десять великих идей науки. Как устроен наш мир.
Десять великих идей науки. Как устроен наш мир. читать книгу онлайн
Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Существует еще одна школа мысли о природе математики, платоновский реализм. Математики, принадлежащие к этой школе, с презрением отвергают точку зрения формалистов, считающих математику занятием, порождающим лишь бессмысленные строчки символов. Они также с презрением отвергают настойчивые утверждения интуиционистов о том, что математика является проекцией ума, что существование не имеет смысла, пока не проведено его доказательство, и что в отсутствии сознания нет никаких чисел и никаких параллельных линий. Подобно формалистам и интуиционистам, они признают недостаточность логицистического утверждения о том, что математика есть не более чем ветвь логики, и соглашаются с ними, что математика больше, чем логика.
Платоники, как называют этот род математиков, считают, что отсутствующая компонента является реальностью. Математики-платоники являются горняками в забое, разрабатывающими залежи предсуществующих закономерностей и пробивающие свои штреки киркой интеллектуальной рефлексии о мире. Они добывают истину, а не вводят ее. Для них числа являются реальными сущностями, а отношения между числами являются утверждениями об существующих объектах. Для них прямые линии, треугольники и сферы реальны как скалы, а арифметические истины (которые, напомним, означают любой вид математической истины, а возможно, даже более того) являются комментариями к некоему роду существования. Таким образом, они отвергают стерильное равнодушие формализма и субъективную запутанность интуиционизма и считают, что они являются такими же учеными, как и все мы. Они извлекают вневременные истины и находясь в яростной оппозиции к установке интуиционистов, считают, что истины существуют даже в том случае, если их доказательство еще не сформулировано.
Я рассмотрю теперь две из важнейших проблем Гильберта, те две, которые наносят удар в самое сердце философии математики и наиболее прямо исследуют ее возможности. Как я уже упоминал, одной из этих проблем является так называемая Entscheidungsproblem, проблема отыскания систематического способа для определения того, можно ли доказать некоторое утверждение символического языка с помощью аксиом этого языка. Атаку на эту проблему почти одновременно предприняли двое, одним был американский логик Алонзо Чёрч (1903-95), который ввел и разработан то, что он назвал λ-исчислением, а другим — британский математик Алан Мэтисон Тьюринг (1912-54), который ввел «логическую вычислительную машину», известную как машина Тьюринга. Эти два подхода изначально были различны на поверхностном уровне, но сотрудничество Чёрча и Тьюринга показало, что на самом деле они математически эквивалентны. Существует одна чрезвычайно важная сильная сторона математики, ее способность показывать эквивалентность с виду совершенно несравнимых вещей. Мы сосредоточим внимание на подходе Тьюринга, поскольку он имеет больше сходства со знакомым нам современным миром компьютеров, но не должно пройти незамеченным, что λ-исчисление Чёрча ассоциируется с используемым в них программным обеспечением и является его основой.
Машина Тьюринга является прибором, который претендует на имитацию действий человека, производящего некоторого рода алгоритмическое вычисление, то есть вычисление, выполняемое с помощью серии последовательных правил, и в котором мы теперь узнаем представление цифрового компьютера. К первой реализации программируемого цифрового электронного компьютера Тьюринга привела, конечно, его работа со взламыванием кодов во время Второй мировой войны на Блетчли-парк, на севере Лондона, а позже в Манчестере. Благодаря успехам во взламывании кодов, на счету Тьюринга оказалось приписываемое ему уменьшение продолжительности войны на месяцы, если не на годы, и, определенно, спасение многих тысяч жизней. К позору для Англии середины двадцатого столетия, Тьюринг, преследуемый законами и нравами общества того времени (он был гомосексуалистом), рано закончил свою жизнь.
Тьюринг искал путь для извлечения сущности того способа, которым человек производит вычисления, а затем исследовал ограничения этого процесса, пытаясь выяснить, возможен ли вопрос, ответ на который, как бы долго ни работал человек, не будет получен? Вариант процедуры, предложенный Тьюрингом, был заключен в капсулу прибора, состоящего из бесконечнодлинной ленты бумаги (в подражание бесконечному источнику бумаги и карандашей, которым может располагать человек-вычислитель при выполнении расчетов, делая записи промежуточных вычислений и затем записывая окончательный ответ) и считывающей и пишущей головки, которую можно запрограммировать так, чтобы она реагировала по определенным правилам на то, что записано в ячейке, проходящей мимо нее в данный момент (рис. 10.10). Эти правила можно было видоизменять и направлять на читающую головку с бумажной ленты.
Рис. 10.10.Версия машины Тьюринга. Машина состоит из бесконечно длинной ленты бумаги, разделенной на ячейки, в которых могут быть записаны символы (обычно, 0 или 1), и механизма, который может считывать эти символы, реагируя на считываемое в соответствии со своим внутренним состоянием в данный момент, меняя символы, если это требуется, и переходя к соседним ячейкам в соответствующем направлении. В этом представлении внутреннее состояние обозначается световым сигналом на одной из сторон считывающей головки. Правая диаграмма показывает возможный отклик: машина находится во внутреннем состоянии, обозначенном световым сигналом, и считывает 1; в результате она заменяет 1 на 0, меняет свое внутреннее состояние и сдвигает ленту на один шаг вправо.
Предположим, что ячейки бумажной ленты могут содержать либо 0, либо 1, а головка, в зависимости от своего внутреннего состояния, может считывать ячейку, записывать в ячейку и передвигать ленту на одну ячейку вправо или влево. Конкретная машина Тьюринга будет выполнять серию операций в зависимости от того, что она обнаружит на ленте, и в соответствии со способом реагирования, на который настроена ее головка. Например, если она обнаруживает на ленте 1, когда сама находится в состоянии «1», она может заменить на ленте 1 на 0, поменять свое внутреннее состояние на «2» и сдвинуть ленту на один шаг вправо. В новой ячейке может оказаться 0. Когда головка находится в состоянии «2» и считывает 0, она, возможно, запрограммирована на сдвиг ленты на один шаг влево, а если она считывает 1, то меняет 1 на 0 и сдвигает ленту на один шаг вправо. Если реакции головки искусно запрограммированы, машину можно использовать для выполнения даже самых сложных вычислений. Реальное конструирование такой головки и ее реакций может быть весьма сложной процедурой, а вычисления могут быть очень медленными, но здесь нас интересует лишь принцип вычислений, а не их эффективность.
Каждая из машин Тьюринга представляет собой специальное устройство из ленты и считывающей головки, определенным образом запрограммированной. Давайте предположим, что мы можем пронумеровать все возможные машины Тьюринга, так что у нас есть склад с ящиками, помеченными знаками t 1, t 2, и так далее. Если одна из этих машин принимает определенное число и останавливается, мы обнаружим определенное число на выходе. Например, если машина t 10принимает число 3, это может означать 42 на выходе и конец вычислений. Чтобы зарегистрировать этот результат, запишем t 10(3) = 42. Однако может существовать комбинация машины и значения числа, для которой вычисления никогда не закончатся, например, если машина t 22принимает число 17. Чтобы зарегистрировать этот результат, запишем t 22(17) = □. Перед Тьюрингом стояла задача узнать, существует ли способ проверки всех возможных машин и принимаемых ими значений чисел и принятия на основе этой проверки решения, будут ли вычисления когда-либо закончены.