Хаос и структура
Хаос и структура читать книгу онлайн
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число. "Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Конечно то, что имеет начало, середину и конец. И вот оказывается: если конечное не есть в то же время стихия бесконечно–малого, то оно не имеет начала. Если оно не есть в то же самое время и трансфинитное, оно не может иметь конца. А если оно не есть континуум, то оно не имеет и середины. Скажут: а если сама едино–раздельность не обеспечивает нам начало, середину и конец? Да, это есть действительно категория определенного бытия, но мы не можем воспользоваться ни началом, ни серединой, ни концом для конструирования числа и множества, если нет налицо указанных условий. Начало есть, но мы не можем с него сдвинуться; середина есть, но мы не можем через нее пройти; конец есть, но мы его не достигаем. Являются ли в таком случае эти отвлеченные категории реальной характеристикой числа и множества?
Итак, если нет бесконечного, то нет ничего и конечного. Условием возможности конечного является бесконечное.
II. Как возможно бесконечно–малое и бесконечно–большое?
a) Если существует бесконечно–малое, которое в то же время [не] является конечным, это значит, что оно есть чистое становление, в котором нет никакой едино–раздельности, г. е. которое вообще даже не есть нечто. Но тогда получается такое становление, в котором неизвестно, что именно становится. Но это есть только словесная нелепость, потому что для dx должно существовать само х. Бесконечно–малое существует лишь как известное приращение конечного. Бесконечно–малое и бесконечно–большое и есть не что иное, как становящееся конечное. Отбросивши здесь конечное, мы отбрасываем определенность самого понятия, т. е. делаем абсолютно алогичным и, значит, необсуждаем [ым ] само бесконечно–малое.
b) Но, может быть, существует инфинитезимальное бесконечное без всякой трансфинитности! Этого очень многим математикам хотелось бы… Но, к сожалению, это не так. Если в инфинитезимальном нет трансфинитного, то с точки зрения чистой логики это означает только, что становление здесь не имеет никакого направления, не имеет никакой цели, т.е. не содержит в себе предела. Однако момент предела входит в самое понятие бесконечно–малого и бесконечно–большого. Не нужно думать, что актуальная бесконечность существует только для бесконечно–большого. Веронезе показал, что существует также актуальное бесконечно–малое. Раз есть предел, то в условиях алогического становления уже с необходимостью существует и трансфинитное (хотя оно тут не используется), ибо последнее и есть определенный синтез становления с пределом.
с) Точно так же немыслимо бесконечно–малое и тогда, когда оно не есть континуум. Если он не есть континуум, это значит, что в нем отсутствует само становление, процесс и уже тем более, значит, отсутствует непрерывность. А это значит, что бесконечно–малое есть постоянная величина, что противоречит самому его понятию.
Итак: если бесконечно–малое не есть в то же время конечное, оно есть становление неизвестно чего; если оно не есть еще и трансфинитное, оно есть становление неизвестно какое [97]; если, наконец, оно не есть континуум, оно вообще не есть становление, или процесс, оно вообще не есть переменная величина.
III. Как возможен континуум?
a) Допустим, что континуум не содержит в себе ровно ничего, что указывало бы на конечность. Это значит, что континуум лишен категории едино–раздельности. Но если нет едино–раздельности, то нет и сплошности, ибо последняя есть не что иное, как заполненная едино–раздельность. Однако, что получится, если мы выделим из континуума все, что создает в нем сплошность, и постараемся получить едино–раздельность? Это значит, что мы получим континуум, в котором не будет никакого счетного скелета, т. е. окажется неизвестным, сплошностью чего именно является континуум. Мы получим множество всех действительных чисел, в котором, однако, нельзя будет указать ни одного рационального числа (ибо множество всех рациональных чисел—счетное), что невозможно. Это, конечно, не значит, что континуум состоит из этих едино–раздельных элементов; но это значит, что для сплошности необходим едино–раздельный скелет, который после своего заполнения и превращается в неразличимую сплошность.
b) Континуум немыслим и без инфинитезимального момента. Это значило бы, что он мыслим вне процесса становления, а тут мы пришли бы к его распадению на дискретное множество. Каждая «точка» континуума, по вышеизложенному ([п. 9]), есть именно становящаяся точка, так что лучше уже говорить не о точках, а прямо об отрезках.
c) Наконец, континуум, лишенный признаков транс–финитности, есть континуум, в котором ни одна точка не есть предельная. А это исключается самим определением континуума как совершенного множества.
Итак: континуум вне категории конечного есть сплошность неизвестно чего; он же, лишенный категории трансфинитного; есть сплошность неизвестно какая, а лишенный категории бесконечно–малого, он вообще не есть сплошность.
е) Самое же главное (оно же предпосылка, оно же резюмирующий вывод) во всем этом исследовании заключается в отрицании грубоколичественного подхода не только к категориям континуума, трансфинитных чисел и бесконечно–малых величин, но даже и к самим конечным числам и величинам. Даже и конечность числа не есть количественная характеристика числа, ибо по голому количеству еще нельзя судить, конечное оно или бесконечное. Если я сказал «пять», то только обыденная традиция человеческого сознания заставляет признать, что это есть именно нечто конечное. Сама же отвлеченно взятая пятерка — и бесконечность, и континуум, и ни то ни другое, смотря по точке зрения. В связи с этим шестерка больше, чем пятерка, но бесконечность ничуть не больше пятерки; и если математики так выражаются, то они сами же себя секут, когда начинают оперировать с бесконечными величинами. Оказывается, хотя последние только и «больше» конечных, но на самом деле они по самому существу своему совсем другие, так что неприменимо даже самое это понятие «больше» или, вернее, оно имеет тут везде разный диалектический смысл.
Одна структура — это арифметическая едино–раздель–ность; тут свое понимание [98]«большего», «меньшего» и «равного», а именно, эти понятия даны едино–раздельно, стабильно. Совсем другая структура—инфинитези–мальное становление; другое здесь и понимание «больше», «меньше» и «равняется», а именно, тут самые эти понятия даны в становлении, в текучести, поэтому и самые операции в анализе бесконечно–малых совсем другие. Как ясно из предыдущего исследования понятия трансфинитного числа и континуума, также и здесь свое собственное понимание этих >, < и =. Поэтому нельзя говорить, что бесконечное больше конечного, если само «больше» в бесконечном и конечном разное.
Можно сказать еще и так. Конечное и многочисленные виды бесконечного не есть различие предметное, бытийственное, но — чисто смысловое, а именно, вырази–тельно–смысловое. С точки зрения онтологической предметности о бытии с одинаковым правом можно сказать и что оно конечное, и что оно бесконечное, и что оно континуальное, сплошное. Можно сказать, что существует только конечное, а бесконечность и континуум есть его виды (хотя тут надо было бы проанализировать, что значит «вид» [99]Можно сказать, что существует только бесконечное, а конечное и континуум есть его виды. Можно сказать, что существует только континуум, а конечное и бесконечное есть его виды. Везде тут по–разному придется понимать термин «вид», но, не вникая в подробности, можно с некоторым грубоватым, но вполне реалистическим добродушием сказать, что одно тут «подчинено» другому и что каждая из этих категорий вполне «выводима» из другой. В одном случае «выведение» есть заполнение фона, в другом оно есть выделение и вырезывание на некоем фоне. Но зато уже ни при каком реализме недопустим ни мещанский субъективизм Брауэра и Бэра, ни рационалистическая импотенция Бореля и Лебега. Только «демон» Цермело немного высовывает свою голову из этого мещанского болота мелкого субъективизма, да и тут способен только беспомощно выставить правильный тезис, будучи не в силах претворить его в живую действительность.