Философия науки и техники: конспект лекций
Философия науки и техники: конспект лекций читать книгу онлайн
Непосредственной сдаче экзамена или зачета по любой учебной дисциплине всегда предшествует достаточно краткий период, когда студент должен сосредоточиться, систематизировать свои знания. Выражаясь компьютерным языком, он должен «вывести информацию из долговременной памяти в оперативную», сделать ее готовой к немедленному и эффективному использованию. Специфика периода подготовки к экзамену или зачету заключается в том, что студент уже ничего не изучает (для этого просто нет времени): он лишь вспоминает и систематизирует изученное.
Подготовлено в полном соответствии с требованиями приказа Министерства образования Российской Федерации от 17 февраля 2004 г. # 697 «Об утверждении программ кандидатских экзаменов» к кандидатскому экзамену по философии науки и техники для технических специальностей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Традиционно считалось, что нет ничего более практичного, чем хорошая теория. Практика теоретизирования родилась в античной Греции. Мыслители той эпохи были едины в том, что ключом к познанию реальности является теоретическая мысль (эпистема) в противоположность мнению (докса). Исходной философской предпосылкой всех дальнейших естественно-научных теорий является учение о космической гармонии. Идеи Аристотеля о самоценности теоретических наук перерастают в этические предписания, в идеал. Позже механика Галилея – Ньютона становится образцом (парадигмой) для экспериментально-математического естествознания ХVIII–ХIХ вв.
Теоретик не может обращаться к природе напрямую. Он создает свой внутренний образ мира из впечатлений, деталей чужого эксперимента, записывает их на язык логики и математики. Это и есть мысленное экспериментирование. Его продуктом является идеальная модель, фрагмент реальности.
Теория подвержена исторической динамике. Например, в математических исследованиях вплоть до ХХ в. преобладал так называемый «стандартный» подход, согласно которому в качестве исходной единицы анализа (клетки) выбирались теория и ее взаимоотношения с опытом. Позднее выяснилось, что эмпирическое исследование сложным образом переплетено с развитием теории и невозможно представить проверку теории фактами, не учитывая предшествующего влияния теории на формирование фактов науки. Иначе говоря, эмпирический и теоретический уровень познания отличаются по предметам, средствам и методам исследования. В реальном исследовании эти два уровня всегда взаимодействуют.
Мысленный эксперимент как метод теоретического познания связан с развитием логической техники (символика и техника записи выкладок). Знаки и символы – это существенная часть методов постижения реальности (физической, химической и др.). Главная функция знаков состоит в том, что они выстроены: сложенные из них знаковые модели на определенном этапе развития становятся самостоятельными и независимыми от слова и выступают как форма рождения и существования мысли, как средство ее протекания, средство мысленного эксперимента. Таким образом, мысленный эксперимент интегрирует два уровня отражения реальности: чувственно-предметный и понятийно-знаковый.
Системный (структурно-функциональный) метод – еще один метод теоретического познания. Система – это целостный объект, состоящий из элементов, находящихся во взаимных отношениях. Отношения между элементами системы формируют ее структуру, поэтому иногда в литературе понятие системы приравнивается к понятию структуры. Традиции системных исследований сложились во второй половине ХХ в. Этиологически понятие системы означает составное целое, ассамблею. Понятие системы, предполагающее рассмотрение объекта с точки зрения целого, включает в себе представление о некотором объединении каких-либо элементов и об отношениях между этими элементами. Теория системы раскрывается через понятия «целостность», «элемент», «структура», «связи» и т.д. Концепция системных исследований использовалась в трудах Г. Спенсера (1820–1903), Э. Дюркгейма (1858–1917), К. Леви-Стросса (1908–2000), М. Фуко (1926–1984), Ж. Лакана (1901–1981), Р. К. Мертона (1910–2001), Т. Парсонса (1902–1979) и др.
Центральное место в логике системного мышления занимают категории части и целого, принцип расщепления целого на части (анализ) и синтеза частей в целостность. Анализ – расщепляет, синтез – интегрирует, однако этого еще недостаточно для раскрытия сущности познаваемых явлений. Современное научное мышление вынуждено раздельно описывать и изучать некоторые фундаментальные стороны материального движения: устойчивость и изменчивость, строение и изменение, бытие и становление, функционирование и развитие. Именно здесь сосредоточены главные логико-математические трудности и коллизии познавательного процесса. Базовыми понятиями в данном случае являются «система», «функции», «структура», «автономность» и т.д.
Множество компонентов становятся системой в том случае, если их взаимосвязь выражается в возникновении таких свойств, которые не присущи каждому отдельному элементу, и функций, которые не могут выполняться каждым из элементов в отдельности. Компонентами же могут быть предметные связи, отношения, состояния, уровни развития и т.п. (исходные единицы, образующие систему). Чем более дифференцирующий характер носят отношения между элементами, тем органичнее система (нелинейная). Разный характер и разная степень связи элементов выражаются понятием «плотность». Таким образом, речь идет о системно-компонентном подходе. Данный подход должен перерастать в системно-структурный подход, а последний – в структурно-функциональный, т.е. система на теоретическом уровне должна рассматриваться как совокупность отношений функционирования и развития. В этом плане есть две предельно абстрактные модели: супердативное множество (целое полностью определяет свойства частей) и суммативное множество (компоненты обладают своей сущностью и не выполняют общих функций системы). Однако в реальности нет ни предельной элементарности, ни предельной целостности.
Структура развития – это совокупность законов изменения соотносящихся состояний. В любом объекте различаются саморазвитие и реальное развитие (эволюция). Ни одна система не развивается изолированно не только в силу обмена с окружающей энергией информацией (что осуществляется через компоненты), но и благодаря воздействию систем друг на друга. Основу процесса развития, т.е. саморазвитие систем (логическую систему реальности), исследует структурно-генетический анализ. Здесь исследователь отвлекается от внешних воздействий и показывает непосредственный механизм развития системы, источником которого служат ее внутренние противоречия.
Следует различать и понятия абсолютного и относительного развития (саморазвития). Об абсолютности развития можно говорить применительно к большим системам, так как у них нет ничего внешнего. Об относительности развития говорят применительно к реально существующим системам, ибо по отношению к ним существуют иные внешние системы.
Выделяют следующие этапы развития системы.
1. Предыстория новой целостности: происходит накопление «строительного материала для появления другого качества („Вещи еще нет, когда она начинается“, Г. В. Ф. Гегель).
2. Этап становления (начало нового объекта, органа, системы). Компоненты системы приводятся в соответствие с новой структурой; отмирают и ликвидируются те компоненты, которые не могут быть преобразованы и подчинены новому; происходит согласование функций системы.
3. Система функционирует на собственной основе: происходит согласование функций компонентов и структуры; возможности системы раскрываются в максимальной мере.
Следует учитывать, что системно-структурные и системно-генетические методы по характеру абстрактны. Они отвлекаются от непосредственно «вещных» характеристик бытия, воспроизводят их через отношения и функции. Так, энергия рассматривается в качестве носителя информации, а материальный субстрат – как ее код. Однако остается проблема отвлечения от субстрата. Например, при сложении скоростей мы отвлекаемся от различий между птицей, самолетом, человеком, автомобилем. Отсюда возникает мнение, что наука вообще не имеет дело с субстратами. В частности, структурализм выдвигает идею антисубстанционализма: Вселенная состоит не из предметов или даже «материи», а только из функций; предметы – это точки пересечения функций.
Системно-структурная методология – явление времени. Она необходима. Однако ориентация лишь на функциональное воспроизведение реальности, без учета самоценности ее компонентов, специфики человеческого восприятия и человеческой меры, приводит к абсолютизации роли науки, сциентизму. Отрицанию человека всегда предшествует отрицание вещей. Так, например, с функциональной точки зрения жизнь может зарождаться как на белковой, так и на кремниевой или другой иной основе. Однако нам известна только земная биологическая жизнь – наш вводно-углеродный вариант жизни. Или другой пример: электронно-механический робот на кремниевой основе будет действовать как человек. Следует ли его считать таковым? В то же время если работник будет исправно выполнять свою функцию, приносить прибыль, то работодателя могут вовсе не интересовать его мысли, чувства, его «душевный субстрат»: «Что тот солдат, что этот» (Б. Брехт).