-->

Человеческое познание его сферы и границы

На нашем литературном портале можно бесплатно читать книгу Человеческое познание его сферы и границы, Рассел Бертран Артур Уильям-- . Жанр: Философия. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Человеческое познание его сферы и границы
Название: Человеческое познание его сферы и границы
Дата добавления: 15 январь 2020
Количество просмотров: 190
Читать онлайн

Человеческое познание его сферы и границы читать книгу онлайн

Человеческое познание его сферы и границы - читать бесплатно онлайн , автор Рассел Бертран Артур Уильям

"Человеческое познание, его сфера и границы" — лучшее произведение лорда Бертрана Артура Уильяма Рассела (1872–1970), оставившего яркий след в английской и мировой философии, логике, социологии, политической жизни. Он является основоположником английского неореализма, "логического атомизма" как разновидности неопозитивизма.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 81 82 83 84 85 86 87 88 89 ... 150 ВПЕРЕД
Перейти на страницу:

Этот процесс одинаков во всех физических измерениях. Грубые измерения ведут к приблизительному закону; изменения в измерительных приборах (подчиняющиеся правилу, что все инструменты для измерения одной и той же величины должны давать насколько возможно точно один и тот же результат) способны делать закон все более точным. Наилучшим инструментом считается такой, который дает наивысшую возможную степень точности закона, причем считается, что идеальный инструмент мог бы сделать закон абсолютно точным.

Данное положение хотя и может показаться сложным, все-таки еще недостаточно сложно. Этот процесс иногда бывает связан только с одним законом, и очень часто случается, что и самый закон приблизителен. Измерения различных величин взаимозависимы, как мы это только что видели в примере с длиной и температурой, так что изменение в способе измерения одной величины может изменить меру другой величины. Законы, условия и наблюдения отдельных фактов бывают почти неразрешимым образом связаны и смешаны в реальном процессе развития науки. Результат наблюдения обычно устанавливается в форме, которая предполагает определенные законы и определенные условные допущения; если результат противоречит системе принятых до этого законов и условных допущений, то исследователю может быть предоставлена значительная свобода в выборе того, какой из этих законов или условных допущений должен быть изменен. Избитым примером этого является эксперимент Майкельсона-Морли, в котором оказалось, что самое простое его истолкование влечет за собой радикальное изменение временных и пространственных измерений.

Но вернемся к измерению расстояния. Здесь имеется большое число грубых донаучных наблюдений, которые наводят на мысль о действительно применяемых методах измерения. Если вы идете или едете на велосипеде по гладкой дороге, применяя равномерное и одинаковое усилие для движения, то вам потребуется приблизительно одинаковое время для каждой следующей одна за другой мили дороги. Если дорога асфальтируется, то количество материала, необходимое для одной мили, будет приблизительно таким же, которое потребуется и для другой мили. Если вы едете по дороге на автомобиле, то время, затрачиваемое на каждую милю, будет приблизительно таким, какое вы предвидите на основании показаний вашего спидометра. Если вы основываете тригонометрические вычисления, исходя из предположения, что все последующие мили одинаковы, то результаты будут в очень близком соответствии с результатами, полученными с помощью непосредственного измерения. И так далее. Все это показывает, что числа, получаемые обычными процессами измерения, имеют большое значение для физики и дают основание для многих физических или физиологических законов. Но эти законы, будучи сформулированы, дают основание для улучшения процессов измерения и для признания результатов улучшенных процессов более «точными», хотя на самом деле они являются только более удобными.

В понятии «точности», однако, имеется один элемент, который не просто только удобен. Мы привыкли к аксиоме, что две вещи, порознь равные одной и той же третьей, равны между собой. Эта аксиома имеет показную и обманчивую видимость очевидности вопреки тому, что эмпирическое свидетельство против нее. Самыми тонкими испытаниями, какие только можно применить, вы можете обнаружить, что А равно В и что В равно С, но что А заметно не равно С Когда это получается, мы говорим, что А в действительности не равно В или что В не равно С. Довольно странно, что мы склонны это утверждать, когда техника измерения совершенствуется. Но настоящая основа нашей веры в эту аксиому не эмпирична. Мы верим, что равенство состоит в обладании общим свойством. Две длины равны, если они имеют одну и ту же величину, и именно эту величину мы и выражаем при измерении. Если мы правы в этом, то аксиома логически необходима. Если A и B имеют одну и ту же величину и если В и С имеют ту же самую величину, то А и С необходимо имеют эту же величину, если только все измеряемое имеет только одну величину.

Хотя эта вера в величину как свойство, которое может быть общим для разных измеряемых вещей, скрыто и влияет на обыденный здравый смысл в его понимании того, что является очевидным, все-таки мы не должны принимать эту веру, пока не имеем свидетельства ее истинности в том частном вопросе, который мы рассматриваем. Вера в то, что у каждого из ряда членов имеется такое свойство, логически эквивалентна вере, что существует транзитивное симметричное отношение, имеющее место между любыми двумя членами ряда. (Эта эквивалентность есть то, что я раньше назвал «принципом абстракции».) Таким образом, утверждая, что имеется ряд величин, называемых «расстояниями», мы утверждаем следующее: между точками любой одной пары точек и точками любой другой пары имеет место или симметричное транзитивное отношение или асимметричное транзитивное отношение. В первом случае мы говорим, что расстояние между точками одной пары равно расстоянию между точками другой пары; в последнем случае, в соответствии со смыслом отношения, мы говорим, что первое расстояние меньше или больше, чем второе. Расстояние между двумя точками может быть определено как класс пар точек, имеющих между собой равные расстояния.

Это все, что мы можем сказать по вопросу измерения, не входя в обсуждение вопроса об определении прямых линий, которым мы теперь должны заняться.

Прямая линия возникла как оптическое понятие обыденного здравого смысла. Некоторые линии выглядят прямыми. Если прямой стержень держать концом против глаза, то его ближайшая к глазу часть скроет все остальное, тогда как если стержень искривлен, то будет видна та его часть, которая находится за искривлением. Имеются, конечно, также и другие основания обыденного здравого смысла в пользу понятия прямой линии. Если тело вращается, то образуется прямая линия — ось вращения, — которая остается неподвижной. Если вы едете стоя в вагоне метро, то вы можете определить, когда поезд идет по кривой, на основании того, что ваше тело имеет тенденцию наклоняться при этом в ту или другую сторону. Существует также возможность до определенной степени устанавливать прямизну посредством осязания; слепые почти так же хорошо определяют формы, как и зрячие.

В элементарной геометрии прямые линии определяются в целом; их главной характеристикой является то, что прямая линия определена, если даны две ее точки. Возможность рассмотрения расстояния как прямолинейного отношения между двумя точками зависит от предположения, что существуют прямые линии. Но в современной геометрии, приспособившейся к нуждам физики, нет прямых линий в евклидовом смысле, и «расстояние» определяется двумя точками только тогда, когда они расположены очень близко друг к другу. Когда две точки расположены далеко друг от друга, мы должны сначала решить, по какому маршруту мы будем двигаться от одной к другой, и затем сложить много мелких отрезков этого маршрута. «Самой прямой» линией между этими двумя точками будет та, в которой сумма отрезков будет минимальной. Вместо прямых линий мы должны употреблять здесь «геодезические линии», которые являются более короткими маршрутами от одной точки к другой, чем любые другие отличающиеся от них маршруты. Это нарушает простоту измерения расстояний, которое становится зависимым от физических законов. В получающихся в результате этого усложнениях в теории геометрического измерения нельзя разобраться без более тщательного исследования связи физических законов с геометрией физического пространства.

1 ... 81 82 83 84 85 86 87 88 89 ... 150 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название