Философия науки и техники

На нашем литературном портале можно бесплатно читать книгу Философия науки и техники, Розов Михаил Александрович-- . Жанр: Философия. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Философия науки и техники
Название: Философия науки и техники
Дата добавления: 16 январь 2020
Количество просмотров: 268
Читать онлайн

Философия науки и техники читать книгу онлайн

Философия науки и техники - читать бесплатно онлайн , автор Розов Михаил Александрович

Восхитительный учебник по философии науки, которым зачитываются вот уже многие поколения аспирантов. При употреблении на ночь в небольших количествах способствует улучшению процессов засыпания.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 68 69 70 71 72 73 74 75 76 ... 106 ВПЕРЕД
Перейти на страницу:

Эта заключительная стадия одновременно предстаёт как изложение «готовой» теории. Процесс её становления воспроизводится теперь в обратном порядке в форме развёртывания теории, вывода из основных уравнений соответствующих теоретических следствий. Каждый такой вывод может быть расценён как изложение некоторого способа и результата решения теоретических задач.

Содержательные операции построения теоретических схем, выступающие как необходимый аспект обоснования теории, теперь приобретают новую функцию – они становятся образцами операций, ориентируясь на которые исследователь может решать новые теоретические задачи. Таким образом, образцы решения задач автоматически включаются в теорию в процессе её генезиса.

После того как теория построена, её дальнейшая судьба связана с её развитием в процессе расширения области приложения теории.

Этот процесс функционирования теории неизбежно приводит к формированию в ней новых образцов решения задач. Они включаются в состав теории наряду с теми, которые были введены в процессе её становления. Первичные образцы с развитием научных знаний и изменением прежней формы теории также видоизменяются, но в видоизменённой форме они, как правило, сохраняются во всех дальнейших изложениях теории. Даже самая современная формулировка классической электродинамики демонстрирует приёмы применения уравнений Максвелла к конкретным физическим ситуациям на примере вывода из этих уравнений законов Кулона, Био-Савара, Фарадея. Теория как бы хранит в себе следы своей прошлой истории, воспроизводя в качестве типовых задач и приёмов их решения основные особенности процесса своего формирования.

Особенности построения развитых, математизированных теорий в современной науке

С развитием науки меняется стратегия теоретического поиска. В частности, в современной физике теория создаётся иными путями, чем в классической. Построение современных физических теорий осуществляется методом математической гипотезы. Этот путь построения теории может быть охарактеризован как четвёртая ситуация развития теоретического знания. В отличие от классических образцов, в современной физике построение теории начинается с формирования её математического аппарата, а адекватная теоретическая схема, обеспечивающая его интерпретацию, создаётся уже после построения этого аппарата. Новый метод выдвигает ряд специфических проблем, связанных с процессом формирования математических гипотез и процедурами их обоснования.

Применение метода математической гипотезы

Первый аспект этих проблем связан с поиском исходных оснований для выдвижения гипотезы. В классической физике основную роль в процессе выдвижения гипотезы играла картина мира. По мере формирования развитых теорий она получала опытное обоснование не только через непосредственное взаимодействие с экспериментом, но и косвенно, через аккумуляцию экспериментальных фактов в теории. И когда физические картины мира представали в форме развитых и обоснованных опытом построений, они задавали такое видение исследуемой реальности, которое вводилось коррелятивно к определённому типу экспериментально-измерительной деятельности. Эта деятельность всегда была основана на определённых допущениях, в которых неявно выражались как особенности исследуемого объекта, так и предельно обобщённая схема деятельности, посредством которой осваивается объект.

В физике эта схема деятельности выражалась в представлениях о том, что следует учитывать в измерениях и какими взаимодействиями измеряемых объектов с приборами можно пренебречь. Указанные допущения лежат в основании абстрактной схемы измерения, которая соответствует идеалам научного исследования и коррелятивно которой вводятся развитые формы физической картины мира.

Например, когда последователи Ньютона рассматривали природу как систему тел (материальных корпускул) в абсолютном пространстве, где мгновенно распространяющиеся воздействия от одного тела к другому меняют состояние каждого тела во времени и где каждое состояние строго детерминировано (в лапласовском смысле) предшествующим состоянием, то в этой картине природы неявно присутствовала следующая абстрактная схема измерения. Во-первых, предполагалось, что в измерениях любой объект может быть выделен как себетождественное тело, координаты и импульсы которого можно строго определить в любой заданный момент времени (идея детерминированного в лапласовском смысле движения тел). Во-вторых, постулировалось, что пространство и время не зависят от состояния движения материальных тел (идея абсолютного пространства и времени). Такая концепция основывалась на идеализирующем допущении, что при измерениях, посредством которых выявляются пространственно-временные характеристики тел, свойства часов и линеек (жёстких стержней) физической лаборатории не меняются от присутствия самих тел (масс) и не зависят от относительного движения лаборатории (системы отсчёта).

Только та реальность, которая соответствовала описанной схеме измерений (а ей соответствовали простые динамические системы), принималась в ньютоновской картине мира за природу «саму по себе».

Показательно, что в современной физике приняты более сложные схемы измерения. Например, в квантовой механике элиминируется первое требование ньютоновской схемы, а в теории относительности – второе. В связи с этим вводятся и более сложные предметы научных теорий.

При столкновении с новым типом объектов, структура которых не учтена в сложившейся картине мира, познание меняло эту картину. В классической физике такие изменения осуществлялись в форме введения новых онтологических представлений. Однако последние не сопровождались анализом абстрактной схемы измерения, которая составляет операциональную основу вводимых онтологических структур. Поэтому каждая новая картина физической реальности проходила длительное обоснование опытом и конкретными теориями, прежде чем получала статус картины мира. Современная физика дала образцы иного пути построения знаний. Она строит картину физической реальности, эксплицируя схему измерения, в рамках которой будут описываться новые объекты. Эта экспликация осуществляется в форме выдвижения принципов, фиксирующих особенности метода исследования объектов (принцип относительности, принцип дополнительности).

Сама картина на первых порах может не иметь законченной формы, но вместе с принципами, фиксирующими «операциональную сторону» видения реальности, она определяет поиск математических гипотез. Новая стратегия теоретического поиска сместила акценты и в философской регуляции процесса научного открытия. В отличие от классических ситуаций, где выдвижение физической картины мира прежде всего было ориентировано «философской онтологией», в квантово-релятивистской физике центр тяжести был перенесён на гносеологическую проблематику. Поэтому в регулятивных принципах, целенаправляющих поиск математических гипотез, явно представлены (в конкретизированной применительно к физическому исследованию форме) положения теоретико-познавательного характера (принцип соответствия, простоты и т. д.).

В ходе математической экстраполяции исследователь создаёт новый аппарат путём перестройки некоторых уже известных уравнений. Физические величины, входящие в такие уравнения, переносятся в новый аппарат, где получают новые связи, а значит, и новые определения. Соответственно этому заимствуются из уже сложившихся областей знания абстрактные объекты, признаки которых были представлены физическими величинами. Абстрактные объекты погружаются в новые отношения, благодаря чему наделяются новыми признаками. Из этих объектов создаётся гипотетическая модель, которая неявно вводится вместе с новым математическим аппаратом в качестве его интерпретации.

Такая модель, как правило, содержит неконструктивные элементы, а это может привести к противоречиям в теории и к рассогласованию с опытом даже перспективных математических аппаратов.

Таким образом, специфика современных исследований состоит не в том, что математический аппарат сначала вводится без интерпретации (неинтерпретированный аппарат есть исчисление, математический формализм, который принадлежит математике, но не является аппаратом физики). Специфика заключается в том, что математическая гипотеза чаще всего неявно формирует неадекватную интерпретацию создаваемого аппарата, а это значительно усложняет процедуру эмпирической проверки выдвинутой гипотезы. Сопоставление следствий из уравнений с опытом всегда предполагает интерпретацию величин, которые фигурируют в уравнениях. Поэтому опытом проверяются не уравнения сами по себе, а система: уравнения плюс интерпретация. И если последняя неадекватна, то опыт может выбраковывать вместе с интерпретацией весьма продуктивные математические структуры, соответствующие особенностям исследуемых объектов.

1 ... 68 69 70 71 72 73 74 75 76 ... 106 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название