Философия оптимизма
Философия оптимизма читать книгу онлайн
Книга посвящена философским проблемам, содержанию и эффекту современной неклассической науки и ее значению для оптимистического взгляда в будущее, для научных, научно-технических и технико-экономических прогнозов.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Теория эволюции звезд опирается на теорию ядерных реакций и на теорию тяготения. Пока рассматриваются главная последовательность и предшествующие этапы эволюции, речь идет о тяготении, как его описывает теория Ньютона. Но существуют, быть может, гравитационные по своей природе процессы, которые выходят за рамки ньютоновой теории. Эти процессы прорывают нормальную, связанную с ядерными реакциями и «обычными» (т. е. подчиненным закону Ньютона) гравитационными силами эволюцию звезды. При подобных катаклизмах звезда в течение короткого времени излучает больше энергии, чем миллиарды звезд, чем целая галактика. Такие процессы, возможно, служат причиной того, что называют вспышками сверхновых звезд [89].
Новые звезды вспыхивают часто — около ста в год в Галактике, а сверхновые появляются в больших галактиках в среднем раз в течение столетия. В нашей Галактике последняя вспышка сверхновой произошла в 1604 г. Теперь, когда можно наблюдать множество галактик (причем воспринимать и измерять не только оптическое излучение), накопилось довольно много наблюдений, проливающих свет на природу вспышек сверхновых. Можно думать, что сверхновые возникают иногда из звезд, претерпевших уже длительную эволюцию, а иногда из молодых весьма массивных звезд, превышающих вдвое и больше массу Солнца. Они образуют при взрыве газовые туманности, отличающиеся высокой радиоактивностью и мощным оптическим и рентгеновским излучением. В. Л. Гинзбург и И. С. Шкловский считают вспышки сверхновых основным источником космических лучей. Проблема происхождения космических лучей — одна из основных астрофизических проблем, решение которых должно быть запроектировано на конец столетия. В этом отношении внеземные наблюдения с космических кораблей, с поверхности Луны и планет земной группы позволят точнее определить состав первичных космических лучей, не измененный взаимодействием с земной атмосферой.
Природа сверхновых еще далеко не выяснена, и то, что сейчас о ней говорят, представляет собой лишь первоначальные гипотезы, иллюстрирующие характер астрофизических проблем, которые будут решаться в конце столетия. Возможно, в течение этого времени будет подтверждена мысль о взрыве, вызванном гравитационным сжатием под действием сил, соответствующих эйнштейновскому закону тяготения. Эта мысль очень характерна для современной астрофизики, ее тенденций и перспектив.
Мы уже говорили о «белых карликах», т. е. сравнительно устойчивых финальных состояниях звезд с массой не больше 1,2 массы Солнца. У звезд с большей массой давление электронного газа недостаточно, чтобы противостоять гравитационному сжатию, последнее продолжается, и звезда уменьшается до размеров порядка 10 км, приобретая фантастическую плотность, превышающую плотность атомного ядра, т. е. 100 млн. тонн в кубическом сантиметре. При такой плотности свободные электроны присоединяются к протонам, протоны захватывают их, превращаясь в нейтроны, и звезда оказывается состоящей из тесно сдавленных нейтронов. В сверхплотном состоянии уже не существует сложных атомных ядер. Зато здесь могут существовать элементарные частицы тяжелее нуклонов; эти частицы не распадаются при столь высокой плотности.
До определенных пределов упругость сверхплотного вещества может противостоять дальнейшему гравитационному сжатию. Если нейтронная звезда не превышала своей массой двух масс Солнца или потеряла избыточную массу, она будет постепенно остывать. Существование нейтронных звезд пока не доказано. В прогнозы астрофизики, в число предстоящих возможных открытий входит открытие нейтронных звезд при наблюдении нейтрино, т. е. незаряженных частиц с нулевой массой покоя, излучение которых должно сопровождать гипотетические реакции в этих звездах. Быть может, нейтронные звезды будут обнаружены по их рентгеновскому излучению. Быть может, они уже обнаружены?
Нейтронная звезда, масса которой не превышает двух масс Солнца, переходит в число остывающих и затем остывших звезд, и это — финал ее эволюции. Но, если масса звезды после нарушения равновесия между упругостью, обязанной ядерным реакциям, и гравитационным сжатием будет больше указанной величины, упругость уплотненного и нейтронизированного вещества не может остановить гравитационное сжатие, которое в этом случае приобретает характер космической катастрофы. Катастрофически быстрое сжатие называется гравитационным коллапсом. Этот термин нам уже знаком, гравитационный коллапс упоминался в связи с гипотезой максимонов. Речь идет о сжатии звезды под влиянием гравитационных сил, растущих соответственно эйнштейновскому закону тяготения. Согласно закону Ньютона тяготение неограниченно возрастает, когда расстояние между телами стремится к нулю. На поверхности звезды гравитационные силы стремятся к бесконечности, когда звезда стягивается в точку, т. е. размеры ее приближаются к нулю. Согласно закону Эйнштейна силы тяготения стремятся к бесконечности, когда радиус звезды приближается к определенной величине, пропорциональной ее массе. Для Солнца или другой звезды с той же массой такой радиус равен трем [90] километрам. Здесь, на таком расстоянии от центра звезды, гравитационные силы становятся бесконечными, и скорость сближающихся под влиянием этих сил частиц становится равной скорости света. Из теории относительности вытекает для этого случая крайне парадоксальная картина. Казалось бы, тело, движущееся в таком гравитационном поле, пройдет громадное расстояние в течение краткого мига. Но этот «краткий миг» в теории относительности теряет абсолютный смысл. Выражение «краткий миг» имеет смысл для системы отсчета, укрепленной на самой звезде. Для других систем, например для нашей земной системы отсчета, этот миг становится все большим интервалом времени, по мере того как происходит сжатие, и, когда оно доводит звезду до упомянутого критического радиуса, миг растягивается бесконечно.
Общая теория относительности рассматривает тяготение как изменение пространственно-временной метрики. Чем больше в данной точке напряженность гравитационного поля, тем больше изменяется метрика, тем больше становится измеренная в этой точке секунда, если перейти к другой системе координат и измерить эту секунду там. То, что в системе звезды длится секунду, в другой системе координат оказывается часом, веком, тысячелетием, миллиардом лет. А при сжатии звезды до указанного выше критического радиуса любой временной интервал становится в иной, свободной от такого сильного гравитационного поля, системе отсчета бесконечным. Возрастание временных интервалов в гравитационном поле выражается, в частности, в возрастании периода электромагнитных колебаний и соответственно в увеличении длины электромагнитных волн, в красном смещении спектральных линий. Гравитационное поле, соответствующее сжатию звезды до критического радиуса (пропорционального, как уже говорилось, массе звезды и для массы Солнца составляющего 3 км), превращает периоды электромагнитных колебаний в бесконечные. Это значит, что электромагнитное излучение прекращается. Прекращается всякое излучение. Коллапсирующая звезда связана с другими телами только тяготением. Звезда падает, по выражению Я. Б. Зельдовича, в гравитационную могилу.
Гравитационный коллапс принадлежит к числу процессов, принципиально отличающихся от обычных релятивистских процессов (здесь слово «обычные» означает «сравнительно известные науке, служащие основным объектом исследования и практически применяемые»). Эти обычные релятивистские процессы требуют для своего описания учета соотношений теории относительности потому, что выделяющиеся и поглощаемые энергии сопоставимы с массами покоя частиц, умноженными на квадрат скорости света. Ультрарелятивистские процессы начиная с открытых в начале 30-х годов аннигиляций и порождений электронно-позитронных пар связаны с поглощением и выделением энергии порядка массы покоя, умноженной на квадрат скорости света. Изучение подобных процессов приближает науку к решению наиболее фундаментальных для нашего времени проблем de rerum natura, приближает практическое применение этих процессов и переход к ультрарелятивистской цивилизации — воплощению субъядерной физики.