Информатика, кибернетика, интеллект
Информатика, кибернетика, интеллект читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Способность обучаться является элементом поведения, возникающим в результате специфического рода взаимодействия между двумя или более связанными друг с другом контурами оптимальных величин. Система, чтобы быть способной обучаться (то есть улучшать свою внутреннюю модель внешнего мира) нуждается по крайней мере в одном двумерном контуре оптимальных величин. Образование многомерных контуров оптимальных величин в системах органической природы и в обществе является продуктом самоорганизации и способности обучаться. Как отмечает Г. Клаус, "способность обучаться делает возможным приспособление частичных систем, в ходе которого поведение всей системы обнаруживает прогрессирующую тенденцию оптимизироваться. Она ведет, по крайней мере в своей тенденции, к тому, что из множества возможных стратегий в каждом конкретном случае без долгих поисков может быть выбрана и использована оптимальная стратегия. Если в определенной области можно было бы фактически достичь этой ступени, то там возможности обучения были бы исчерпаны [79]. Факт, что подобные области существуют, доказывают, например, так называемые автоматизмы человеческого поведения, не требующие уже больше мыслительной работы или особой сосредоточенности.
Следовательно, обучающие матрицы как модели поведения имеют большое эвристическое значение. Они подтверждают положение о том, что функции обучения и познания человека можно имитировать, воспроизводить с помощью машины. Это развитие
177
выражает внутренние закономерности современного естествознания и техники, ориентацию их на решение комплексной проблемы симбиоза человека и машины.
Обучение как важнейшая форма деятельности интеллекта может служить одним из критериев интеллектуальности поведения системы. В этом плане выделяют два типа разума, сходных в том смысле, что оба они требуют обучения, и различных по их отношению к процессу обучения [80]. Первый тип, адаптивный разум, присущ, например, студенту, который обучается только тому, чему его учат преподаватели и на что его наталкивает опыт. Второй тип, творческий разум, присущ студенту, который идет дальше и находит свой собственный путь. Таким образом, умственные способности человека проявляются в том, что он должен: а) уметь обучаться, то есть в непосредственном взаимодействии с внешним миром приобретать информацию и интегрировать ее во внутренней модели, добиваться понимания, то есть уметь связывать приобретенные знания с фактами и явлениями действительности; б) обладать способностью умственной приспособляемости, то есть способностью отказываться от привычных шаблонов и находить новые конкретные взаимосвязи; в) обладать умственной зрелостью, передавать сообщения другим интеллектуальным людям и с этой целью создавать систему знаков, то есть кодировать сообщения. Это предполагает способность конструирования и идентификации знаков.
Машина также может обучаться. При наличии достаточно сложной программы она может реагировать на новую ситуацию. Она способна решать задачи. Она может руководить действиями [81]. Во всех этих случаях, как отмечает Д. Финк [82], поведение машин и людей отличается не по типу, а по уровню. Это характеризует искусственный разум - разум машины с поведением, которое, если бы оно наблюдалось у человека, могло бы быть названо разумным. Искусственный разум обладает такими важными чертами, как способность организовывать информацию в значимые информационные комплексы, распознавать, запоминать, вспоминать эти комплексы и оперировать ими в процессе игры, решения задач, ответа на вопросы и управления другими механизмами, а также способность адаптироваться в изменяющихся внешних условиях, и, в частности, реагировать на комплексы входных сигналов, не предусмотренные явным образом при конструировании.
Обычно предполагают, что решение современных проблем управления в социальной, экономической и промышленной сферах (так называемых глобальных проблем) лежат в пределах человеческих возможностей или что существующие способности человека могут быть развиты до необходимого уровня путем образования и обучения. Однако кибернетический подход - это подход, на основе которого становится очевидным, что человек не в состоянии решать стоящие перед ним в настоящее время проблемы управления, полагаясь только на свой собственный разум и не
178
прибегая к помощи технических (искусственных) средств. Ограниченность человеческого (безоружного) интеллекта, связанная с самой структурой мозга и аппарата познания, ставит проблему искусственного интеллекта как усилителя умственных способностей, возможность построения которого обоснована, в частности, теоремами Тьюринга - фон Неймана.
Понятие усиления интеллекта выводится из понятия усиления в кибернетическом контуре регулирования. Принцип усиления интеллекта имеет техническое соответствие в обучающихся автоматах, которые на основе первоначальной информации, полученной от человека, достигают интеллектуальной ступени и затем путем самостоятельного обмена информацией с окружающим миром в процессе обучения постоянно повышают свои интеллектуальные способности.
Обычно против положения об ограниченности мышления человека приводится аргумент, согласно которому человеческое мышление - это процесс коллективный. Разумеется, все существенные функциональные системы, удостоверяющие индивидуум как обучающуюся систему, оказываются отнесенными к общему как к целому. Само общество предстает в качестве системы обучающейся. В этом плане способность человека обучаться значительно возрастает именно потому, что в его распоряжении находится уже не только одно внутреннее накопление - собственный опыт, но и некоторое внешнее накопление - опыт всего общества. Уместно в этой связи упомянуть и другой аспект. "Положение о том, - пишет Г. Клаус, - что человек имеет общественную сущность, что знание и познание имеют общественный характер, - очень старо. На уровне современной кибернетики, при переносе ее результатов в область теории познания эти старые положения получают новые аспекты и новые перспективы" [83].
Кибернетический аспект обучения чаще всего ассоциируется с информационным подходом к обучению, который, в свою очередь, нередко сводится к способности вырабатывать максимальный объем информации, то есть к количественному показателю. Однако в действительности сокращение объема информации, отбор ее требуют намного более высоких способностей. Не случайно поэтому усиление умственных способностей неразрывно с усилением избирательности. "Решающим, - пишет Г. Клаус, - является именно отбор и ассоциативная способность человеческой информационной системы. Отбор информации, ассоциирование и накопление важной информации составляют в совокупности сознание" [84]. Прием и обработка информации не раскрывают еще сущности кибернетической системы. Через них можно лишь изменять внутреннюю модель внешнего мира, однако важнейшим компонентом обучения служит оптимизация этой модели.
Таким образом, склонность к обучению связана со стремлением системы постоянно совершенствовать внутреннюю модель внешнего мира. Последняя есть концентрированное отражение
179
определенных сторон и черт действительности, которое подчеркивает преимущество высших кибернетических систем по отношению к примитивным. Самообучающиеся кибернетические системы с признаками самоорганизации качественно обогащают процесс обучения, а человеко-машинные комплексы в обучении свидетельствуют о большой эвристической силе кибернетических методов, которая обеспечивает эффективность кибернетического направления в педагогике.
Однако наряду с интенсификацией и кибернетизацией процесса обучения важно не упустить из виду и другую сторону его. Кибернетическое направление в педагогике призвано изменить характер труда педагога и учащихся, наполнить его творческим содержанием. Оптимизация процесса обучения, придание ему научно обоснованных критериев, осуществление сотрудничества педагога и учащихся с помощью эффективных интеллектуальных средств социальной информатики должны сообщить процессу обучения и воспитания субъективно-гуманистическую направленность. Необходимо подчеркнуть, что все более широкое использование автоматизированных обучающих систем не изменяет центрального принципа педагогической науки, согласно которому преподаватель был и остается главным организатором педагогического процесса, а учащиеся при этом становятся подлинными субъектами своего собственного обучения.