Философия оптимизма
Философия оптимизма читать книгу онлайн
Книга посвящена философским проблемам, содержанию и эффекту современной неклассической науки и ее значению для оптимистического взгляда в будущее, для научных, научно-технических и технико-экономических прогнозов.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Несомненно, для психологии Эйнштейна характерна такая тенденция. Его замечания о месте сторожа на маяке как об оптимальном положении ученого, отмеченная Инфельдом и другими постоянная тяга к одиноким размышлениям, к уходу в себя выявляли не только индивидуальные черты мыслителя, но и некоторую сторону стиля науки XX столетия. Но именно сторону, только сторону. Сторону, которая не могла существовать без другой стороны. Без глубокого и активного погружения в пеструю и на первый взгляд «пуантилистскую», состоящую из отдельных пятен картину частных исследований. Такая амбивалентная, противоречивая природа научного мышления связана с несомненным различием и несомненной связью «внутреннего совершенства» и «внешнего оправдания» научной теории. Чтобы подняться к наиболее общим принципам, из которых естественно вытекают новые парадоксальные результаты, необходим этот синтетический взгляд на природу в целом, открывающий независимый от отдельных рядов явлений субстрат мира.
Такими были соображения Эйнштейна и затем Минковского об отсутствии физических эквивалентов трехмерного пространства, о физической реальности четырехмерного пространства-времени. Но, поднимаясь к общим проблемам и как бы удаляясь от конкретных и частных проблем, научная мысль не может оторваться от последних, потому что эти общие проблемы модифицируются на основе «внешнего оправдания», на основе эмпирии, на основе парадоксальных фактов. Размышления о пространстве и времени привели к новому, невозможному без новых оптических и электродинамических наблюдений синтезу классических понятий, парадоксальные факты получили естественное объяснение в рамках парадоксальной теории, и весь генезис и все развитие неклассической науки подтвердили тезис о необходимом сенсуальном, эмпирическом, гетерогенном аккомпанементе рационалистической мысли.
Отсюда противоречивая позиция Эйнштейна: он стремился к одиночеству и откликался на множество самых разнообразных экспериментальных и теоретических результатов, он откликался даже на события, непосредственно не связанные с наукой, и в конце концов стал физиком, наиболее близким беспрецедентно широкому кругу людей. И это тоже не индивидуальная черта, во всяком случае не только индивидуальная. Современная наука вызывает у ее представителей, и не только у них, а у самых широких кругов, две связанные одна с другой психологические черты. Современный ученый стремится подняться над многообразием фактов и остаться лицом к лицу с наиболее общими проблемами бытия, и в то же время он, как никогда раньше, прислушивается ко всему, что происходит в науке, причем не только в своей области, но и в более отдаленных областях, откуда могут прийти новые факты и новые логические конструкции. По-видимому, эти психологические черты ученого нашей эпохи будут становиться все более связанными между собой, по мере того как наука будет приближаться к своему современному идеалу — к единой концепции do rerum natura, охватывающей невероятно расширившуюся и усложнившуюся эмпирическую базу неклассической науки.
Сейчас фундаментальные принципы теории относительности, квантовой механики и релятивистской квантовой механики индуцировали очень большой цикл экстенсивных исследований и открытий, которые вместе с этими принципами образуют атомную и ядерную физику. Но все большее число апорий, противоречий, трудностей поворачивает научную мысль к поискам новых принципов. По-видимому, такой поворот будет усиливаться в течение ближайших десятилетий. Мыслители, отдающие свои силы проблеме кварков, проблеме дискретности пространства, проблеме отличия субстанциальных свойств частицы от ее мировой линии, проблеме конечной или бесконечной Вселенной, являются «отшельниками» в смысле, не имеющем ничего общего с какой-либо интеллектуальной изоляцией. Ведь подобные проблемы являются вопросами, которые будут заданы природе, частично, может быть, окажутся лишенными смысла, но будут так или иначе решены с помощью больших коллективных экспериментальных, теоретических и вычислительных работ.
Физика высоких энергий
В начале этой книги говорилось о комплексном прогнозе, включающем ряд связанных между собой сдвигов в энергетике, технологии, управлении производственными процессами и в характере труда. Эти сдвиги, объединенные условным термином «атомный век», непосредственно связаны, если по-прежнему пользоваться терминами Вайскопфа, с экстенсивными исследованиями, создавшими атомную и ядерную физику и индуцированными интенсивным продвижением науки к релятивистским и квантовым принципам. Но атомный век, как и всякий период цивилизации, должен включить такие направления научной мысли, которые подготавливают следующий, более высокий по рангу динамизма период.
В течение атомного века такая подготовка связана с интенсивным направлением науки — поисками новых фундаментальных принципов, которым суждено индуцировать субъядерную физику.
Субъядерная физика — это физика частиц, которые входят в атомные ядра или не входят в них, но находятся на той же ступени иерархической лестницы дискретных частей вещества, что и нуклоны. Это частицы, которые, в отличие от более крупных дискретных тел, в отличие от молекул, атомов и атомных ядер, может быть, не делятся на уже существовавшие в их составе низшие звенья иерархии. Их распад и рождение в этом случае не сводятся к пространственной перегруппировке тождественных себе субчастиц. К чему они сводятся, мы пока не знаем. Мы также не знаем, где локализованы встречи, рассеяния и трансмутации частиц, не знаем, впрочем, имеет ли смысл вопрос о точной локализации этих событий. Мы можем лишь утверждать, что эти события происходят в очень малых пространственно-временных ячейках, в пространстве порядка линейных размеров атомного ядра и в течение временных интервалов, необходимых свету, чтобы пройти такое пространство. Здесь, быть может, находится пространственно-временной порог, перешагнув через который мы попадем в мир, где ход ультрамикроскопических событий подчинен принципам, более общим и точным, чем известные нам сейчас. Быть может, этот порог дальше и ультрамикроскопический мир, где можно встретить новые решения фундаментальных проблем бытия, находится в пространственно-временных ячейках на много порядков меньших. Во всяком случае путь к новым фундаментальным принципам, к их «внешнему оправданию» лежит через экспериментальное изучение очень малых областей, где происходят процессы, которые мы склонны считать ультра-релятивистскими.
Для этого нужны очень большие энергии частиц, которыми манипулирует экспериментатор.
Переход физики от атомно-молекулярных теорий XIX в. к атомной физике, затем к ядерной и субъядерной — это переход от энергий в сотые доли электронвольта к энергиям, измеряемым электронвольтами, затем миллионами и миллиардами эв. Атомы классической физики и химии при их тепловом движении обмениваются энергиями порядка 0,01 эв; они ведут себя при этом как твердые шарики. Электромагнитное излучение атомов, раскрывающее их структуру, обладает энергией от нескольких эв в оптической области до нескольких сотен тысяч эв в ренгеновском излучении. Ядерная структура раскрывается в процессах, требующих энергии в миллионы электронвольт. С начала 30-х годов создалось своеобразное сотрудничество в ядерной и затем в субъядерной физике между ускорителями, которые придавали частицам высокие энергии (с 30-х годов до нашего времени эти энергии возросли от сотен тысяч до десятков миллиардов эв), и приборами, с помощью которых изучали космические лучи [77]. Космические лучи — это потоки частиц различного типа и с различными энергиями, которые несутся к Земле со всех сторон из мирового пространства. Частицы, входящие в космическое излучение, имеют иногда колоссальные энергии, недостижимые в ускорителях, но ими труднее манипулировать, и по большей части новые частицы и новые процессы находили сначала в космических лучах, а затем изучали более детально с помощью ускорителей. Впрочем, в 50—60-е годы ускорители позволили в ряде случаев самостоятельно открыть новые частицы и процессы. Энергия частиц космического излучения, используемых в новых открытиях, все время росла и с 30-х годов выросла примерно в таком же отношении, как и энергия частиц в ускорителях. В начале этого периода в космических лучах был найден позитрон, существование которого было предсказано релятивистской квантовой механикой. Открытие и изучение позитрона не требовало очень высоких энергий, так как масса позитрона (равная массе электрона) мала и, чтобы превзойти соответствующую этой массе энергию покоя электрона и позитрона, нужны энергии порядка миллиона эв, но при возникновении и распаде нуклонов и других, еще более тяжелых частиц фигурируют энергии порядка миллиардов эв. В настоящее время область энергий, в которой ведутся интенсивные исследования космических лучей, достигла триллионов эв, а ускорители сообщают частицам энергии до 76 млрд. эв. Таков наиболее крупный ускоритель протонов, сооруженный недавно в Серпухове. Крупные ускорители работают в Брукхэвене (33 млрд, эв), в Женеве (28 млрд, эв), в Дубне (10 млрд. эв). Чтобы дать представление об их устройстве, потребуется очень краткая историческая справка.