Информатика, кибернетика, интеллект
Информатика, кибернетика, интеллект читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Между нетворческими и творческими мыслительными процессами нередко проводится такое разграничение: нетворческое (схематичное) мышление выразимо с помощью алгоритма, в то время как творческое мышление - нет. Так как автомат совершает операции только с помощью алгоритма, а творческие процессы принципиально неалгоритмизируемы, моделирование их на вычислительной машине невозможно.
Однако благодаря эвристическому программированию, выявляющему элементарные информационные процессы, лежащие в основе сложных форм деятельности мозга, в универсальных кибернетических машинах удается воспроизводить способность человека к творческой деятельности, отличной от простых логических операций. По замечанию М. Минского, "мы должны быть готовы также к открытию эффективных путей эвристического программирования, которые не имитируют человеческого поведения" [6]. До возникновения современной эвристики в силу того, что физиологические исследования не охватывают сложных мозговых процессов, существовал разрыв между физиологией и психологией мышления. Эвристическое программирование помогает преодолению этих трудностей; оно способствует созданию материалистической теории и экспериментальных методов, позволяющих выявлять системы принципов переработки информации в головном мозге человека и идти в направлении создания целостной теории нервно-психических познавательных процессов.
Важное значение приобретает изучение процедур организации элементарных информационных процессов в программе различных уровней, поскольку живая природа представляется иерархически структурированной. Характерно, что при статистическом типе образования высшего яруса взаимная заменяемость объектов низ
153
шего яруса получается сама собой, а это сильно повышает надежность функционирования рассматриваемых систем. Таким образом открываются возможности для перехода от случайного выявления отдельных принципов (например, принципа проб и ошибок перебора вариантов) к более полному описанию сложных функций мозга.
Эвристическое программирование нередко противопоставляется алгоритмическому описанию [7]. При этом утверждается, что эвристики эффективны в тех случаях, когда невозможно алгоритмическое решение проблемы. В настоящее время существует широкий класс систем, для которых процесс управления алгоритмически описан. Теория алгоритмов - в ее кибернетическом аспекте - обычно определяется как дисциплина, в которой исследуются однозначно детерминированные процедуры преобразования дискретной информации в системах управления в отвлечении от материального носителя информации и границ реальных возможностей физического механизма, реализующего это преобразование. К границам реальных возможностей, от которых теория алгоритмов, понимаемая таким образом, абстрагируется в своем анализе, относятся также "продолжительность жизни" механизма во времени и пространстве и его надежность. Имеются, однако, такие системы, в которых процесс управления не описывается алгоритмически. То или иное регулирующее воздействие, нормализующее управляемый объект и приводящее в соответствие с программой его динамические характеристики, должно вырабатываться регулятором специально для данного случая.
Тем не менее противопоставление эвристического программирования алгоритмическому решению проблем не оправдано. Согласно действующему в науке принципу соответствия, понятие алгоритма как однозначно детерминированного преобразования было обобщено и распространено на класс вероятностных процессов. В. М. Глушков [8] предложил понятие алгоритма, допускающее вероятностные варианты перехода. С точки зрения такого определения алгоритма и разрабатываемой на этой основе теории алгоритмов, вполне законна задача алгоритмического описания эвристических форм работы мозга. Трудности этой задачи определяются тем, что в основе эвристических форм работы лежат алгоритмы, о которых человек обычно не может дать словесного отчета. В качестве примера "бескомпьютерной кибернетизации" инженерного творчества Ф. П. Тарасенко [9] приводит известный АРИЗ - алгоритм изобретений Г. С. Альтшулера, представляющий собой систему эвристик из изобретательской практики.
Таким образом, эвристическое программирование как сравнительно новая область кибернетики, изучающая высшие функции человеческого мозга с целью воссоздания последних в тех или иных искусственных системах, пользуется методами, которые реализуются на основе учета динамических и вероятностно-статистических законов в их диалектической связи. Метод эвристического
154
изучения функционирования мозга свидетельствует о том, что по мере углубления в сущность биологических и психических процессов на некоторых уровнях организации, в частности на уровне информационных отношений, мы сталкиваемся с "особым" типом причинных отношений - со статистической закономерностью и необходимостью нового понимания роли случайности.
Эвристический подход к явлениям действительности, отличающимся сложностью и неопределенностью, есть в сущности качественный скачок в логике научного исследования. Он, в частности, демонстрирует способность человеческого разума к самопознанию; этот процесс в то же время выступает как процесс познания объективных законов природы, знание которых необходимо человеку в практическом преобразовании действительности. Кибернетика решает проблему передачи некоторых функций человека машинам в процессе научного решения тех или иных задач, и подобная постановка вопроса вряд ли может вызвать возражения. Данная проблема, однако, предполагает формализацию самого процесса научного исследования. Развитие науки свидетельствует о том, что потребности в формализации обгоняют изучение содержания того или иного процесса, ибо познание, будучи нацеленным с самого начала на удовлетворение практических нужд человека, создает образы предметов, не существующих в природе, но "долженствующих" быть. Эвристическое программирование при составлении программы подходит к проблеме логики научного исследования в рамках кибернетики. В решении этой проблемы должны объединиться философия, кибернетика, логика, физиология и психология. Как справедливо заметил Э. Хант, "если бывает трудно понять различные достижения искусственного интеллекта, то не потому, что требуются специальные знания в какой-нибудь одной из областей исследований, а потому, что необходимы некоторые познания во многих областях" [10].
Эвристическое программирование[11] возникло вследствие недостаточности и ограниченности приложения современных математических методов к биологическим и психическим явлениям. Современный математический подход, несмотря на его все возрастающую роль, не свободен от недостатков. Интересно отметить, что методы теории вероятностей и математической статистики, как наиболее эффективные в прикладной математике, обнаруживают свою ограниченность уже в решении проблемы надежности. Сейчас разрабатываются элементы радиоэлектронной аппаратуры, надежность которых характеризуется интенсивностью отказов порядка 10(-11 степени)-10(12 степени) 1/ч. Проверить столь высокую надежность, требуемую от современной аппаратуры и ее элементов, практически невозможно. В связи с этим ставится под сомнение правомерность и целесообразность использования в ряде случаев вероятностных критериев, дающих "интегральную" количественную оценку надежности и оставляющих в тени истинные причины отказов. Вероятностно-статистический анализ не позволяет полу
155
чить внутренню характеристику той или иной задачи. "Слабости современных ЭВМ при решении многих задач управления большими системами, подчеркивают Д. А. Поспелов и В. Н. Пушкин, - связаны отнюдь не только с устройством самих автоматов. Своими корнями слабости эти уходят весьма далеко - в глубь принципов и оснований самой математики. Поэтому дальнейшее движение вперед в деле разработки автоматов, воссоздающих высшие формы человеческой деятельности, предполагает фундаментальные открытия в математике" [12].
Симптоматично, что методы исследования живых систем приобретают ярко выраженный кибернетико-физико-химико-биологический характер. Это фундаментальное для исследования жизни обстоятельство обусловливает все большее возрастание роли содержательного подхода в собственно кибернетических формализованных приемах. Развитие кибернетических исследований свидетельствует о том, что движение знаний происходит от функциональности к структурности. Кибернетическое моделирование в результате такого диалектического движения познания становится частично структурным по своему характеру, в определенной мере перерастает в собственно структурно-субстратное исследование объекта. Эвристическое программирование, опираясь на методы, которые реализуются на основе учета динамических и вероятностно-статистических законов в их диалектико-материалистическом описании причинности, как раз и выступает выражением этой тенденции в кибернетических исследованиях.