Философия оптимизма
Философия оптимизма читать книгу онлайн
Книга посвящена философским проблемам, содержанию и эффекту современной неклассической науки и ее значению для оптимистического взгляда в будущее, для научных, научно-технических и технико-экономических прогнозов.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В производстве мы можем представить себе повторение одних и тех же операций; затем динамический процесс перехода от одних операций к другим с изменением конструкции машин и технологических методов, но при неизменной физической или химической схеме; затем изменение самой схемы. Об этом говорилось в начале книги. По-видимому, кибернетика будет постепенно регулировать динамические процессы все более высокого ранга.
Фотоэлементы 30—40-х годов регулировали автоматический переход от одной операции к другой, но они не меняли того набора операций из которых складывался технологический процесс. Иная, динамическая, функция состоит в переходе к новому набору операций, к новой технологии на основе конструирования новых механизмов. Эту функцию можно в большой степени автоматизировать с помощью кибернетических машин, которые, исходя из заданных программ, высчитывают более совершенные параметры конструкций и технологических методов. Отсюда вытекает переход к более высокому по рангу динамизму в производстве и сосредоточение человеческого труда на более динамичных функциях. Кибернетическая машина, управляющая установившимся, ста^ ционарным процессом, выполняет сравнительно несложные серии операций. Но, если объектом управления является неустановившийся процесс, его регулирование требует более сложных цепей передачи информации. Когда кибернетическое устройство меняет нагрузку промышленных агрегатов, меняет грузопотоки, перераспределяет потоки энергии в электрическом кольце и т. д., это требует очень длинных логико-математических цепей. Чтобы такое перераспределение нагрузок выполнялось непрерывно, нужна большая быстрота элементарных операций. Поэтому применение быстродействующих приборов позволяет автоматизировать всё более динамичные процессы, переходить от регулирования установившихся процессов к непрерывной оптимизации процессов в зависимости от меняющихся условий. Дальше идет оптимизация уже не за счет перераспределения нагрузки имеющихся агрегатов, а за счет перехода к более совершенным агрегатам — автоматическое проектирование и изготовление новых машин. Здесь цепи элементарных процессов в ячейках кибернетических устройств должны передавать информацию о последовательных состояниях и эффекте систем, состоящих из множества деталей, должны сопоставлять лавинообразно нарастающее число вариантов. Это равносильно игре в шахматы на доске с колоссальным числом клеток, колоссальным числом фигур и непрерывно меняющимися правилами игры, причем игре непрерывной, безостановочной, без интервалов для продумывания ходов.
Отсюда виден возможный эффект перехода в кибернетических машинах от вакуумных приборов к полупроводниковым. Этот эффект виден не слишком отчетливо, без деталей, но он может быть сформулирован в общем виде: современные кибернетические устройства позволяют автоматизировать не только установившиеся процессы и не только динамические процессы перегруппировки нагрузок агрегатов, но и динамические процессы проектирования новых агрегатов и изменения производственной технологии.
Можно представить себе, что в течение ближайшего десятилетия завершится автоматизация установившихся процессов и автоматизация их регулирования. Случайные нарушения установившегося ритма и установившейся последовательности операций будут устраняться автоматически. Однако основной функцией кибернетических механизмов должно быть регулирование динамических процессов. Таковы прежде всего упомянутые уже перераспределения нагрузок. Здесь регулирование включает решение задач типа: как должны измениться нагрузки различных агрегатов, чтобы потребность в их работе была удовлетворена наилучшим образом? Возьмем в качестве примера кольцо, состоящее из электростанций, соединенных высоковольтными электропередачами. Чтобы котлы на станциях работали регулярно и чтобы автоматически устранялись случайные нарушения режима, достаточно сравнительно простых термоэлектрических, фото электрических и т. п. приборов. Перераспределение нагрузок между станциями и агрегатами при меняющемся потреблении энергии или при других переменных условиях требует уже быстрого решения математических задач и автоматического выполнения оптимальных решений. Это же относится к газоснабжению, водоснабжению, теплофикационным системам, грузообороту и во все растущей степени к добыче топлива и сырья, к непрерывным технологическим процессам в промышленности и т. д. Можно представить себе, что в течение одного или двух десятилетий во всех основных отраслях производства будет осуществлено динамическое регулирование в виде перераспределения нагрузок с помощью кибернетических устройств.
Но это только первая интегральная производственная задача кибернетики. Перераспределение нагрузок делает динамичными отдельные производственные процессы, работу отдельных агрегатов и отдельных предприятий, но производство в целом остается установившимся процессом, и характеризующие его интегральные параметры (в том числе важнейший — производительность общественного труда) не меняются. Здесь нет единой для производства в целом необратимой динамической эволюции — технического и технико-экономического прогресса.
Такая эволюция гарантируется переходом к новым конструкциям и новым технологическим процессам. Может ли кибернетика взять на себя решение такой задачи? Здесь нужно прежде всего устранить возможные недоразумения. Речь ни в коем случае не идет о реальном воплощении машины Джона фон Неймана, т. е. кибернетической машины, которая воспроизводит себя в виде серии машин с теми же параметрами. Речь не идет и о кибернетическом конструкторе, который вытеснит живого конструктора. Речь идет о том, что живой конструктор будет пользоваться кибернетическими машинами, которые очень быстро (во временной шкале конструкторской работы — практически мгновенно) будут находить конкретные параметры, соответствующие каждому новому варианту разрабатываемого нового агрегата, будут вычислять эффект каждого варианта, сопоставлять их друг с другом и находить оптимальный. Не так уж существенно, сколько живых конструкторов будут пользоваться помощью кибернетических машин. Существенно другое. Темп конструкторской работы и разработка новых технологических процессов увеличатся во много раз. Технический прогресс станет непрерывным, даже если брать отдельные отрасли производства и наблюдать их эволюцию в течение сравнительно небольших интервалов времени.
Когда речь идет о производстве и эволюции его технических и технико-экономических показателей, понятие непрерывности имеет специфический смысл. Меняются статистически усредненные величины, усредненные, например, для всего производства в целом. С такой оговоркой (для производства в целом) уже в первой половине нашего столетия технический уровень поднимался в некоторые периоды непрерывно. Теперь кибернетика, примененная в конструкторских бюро, технологических лабораториях и проектных институтах, позволяет достичь непрерывного технического прогресса не только в производстве в целом, но и в отдельных отраслях.
Радикальный поворот в ходе технического прогресса — это переход от непрерывного повышения уровня техники к непрерывному ускорению этого процесса. О нем уже говорилось в главе: «Почему 2000-й». Основа такого ускорения — появление все новых идеальных физических и химических схем, приближение к которым и составляет самую сущность технического прогресса. От чего зависит появление новых идеальных схем, т. е. прогресс науки в областях, непосредственно связанных с прикладными проблемами? Темп научного прогресса в этих областях зависит от обратной связи, от применения результатов исследований в производстве, от фундаментальных исследований, которые сами по себе, непосредственно не дают прикладных результатов, от скорости передачи научной информации и в очень большой степени от скорости сопоставления теоретических выводов с экспериментом. Кибернетика фигурирует во всех этих ускоряющих научный прогресс факторах. Мы остановимся только на последнем — на скорости экспериментальной проверки теоретических выводов. При современной математизации почти всех отраслей науки путь от некоторой теоретической концепции до выводов, которые могут стать предметом экспериментальной проверки, включает в большинстве случаев длинные ряды вычислений. Иногда они требуют от вычислителей месяцев и даже лет труда. Машины выполняют такие вычисления в течение минут. Применение вычислительной техники — одно из оснований, чтобы проектировать на последние десятилетия XX в. практически непрерывный поток новых физических и химических схем, которые будут целевыми схемами технического прогресса.