-->

Философия оптимизма

На нашем литературном портале можно бесплатно читать книгу Философия оптимизма, Кузнецов Борис Григорьевич-- . Жанр: Философия. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Философия оптимизма
Название: Философия оптимизма
Дата добавления: 16 январь 2020
Количество просмотров: 243
Читать онлайн

Философия оптимизма читать книгу онлайн

Философия оптимизма - читать бесплатно онлайн , автор Кузнецов Борис Григорьевич

Книга посвящена философским проблемам, содержанию и эффекту современной неклассической науки и ее значению для оптимистического взгляда в будущее, для научных, научно-технических и технико-экономических прогнозов.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 27 28 29 30 31 32 33 34 35 ... 90 ВПЕРЕД
Перейти на страницу:

В дополнении 1967 г. Комиссия по атомной энергии предполагает, что потребление энергии с 1965 по 1980 г. увеличится на 50 %, а к 2000 г. — на 250 %. Потребление электроэнергии сейчас составляет 20 %, к 1980 г. оно возрастет до 30 %, а к 2000 г. — до 50 %. Процент участия атомных станций в выработке электроэнергии был меньше одного в 1965 г., в 1980 г. он будет равен 23–30, а в 2000 г. — 50.

Прибавим к этим данным некоторые цифры, называвшиеся на Мировой энергетической конференции в 1968 г. Для всего энергетического баланса выработка энергии за счет сжигания угля составляет 32 % от всей энергии в 1970 г., 22 % в 1980 г. и 10–15 % в 2000 г. Природный газ и нефть соответственно будут давать 59, 66 и 58 %, гидроэнергия — 7, 5 и 2 %. Атомная энергия—2 % в 1970 г., 7 % в 1980 г. и около 25 % в 2000 г. [44]

Для темпов роста производительности труда имеет первостепенное значение доля атомной энергии в производстве электроэнергии. Во всей выработке энергии атомная энергия составит 25 %. Но эта доля в энергетическом балансе принадлежит атомным электростанциям. Удельный вес электричества как энергоносителя составит в 2000 г. более 50 % и половина этой доли — 50 % всей электроэнергии — будет, как уже говорилось, производиться на атомных станциях [45]. В форме электричества энергия будет обладать в последней трети столетия первостепенным реконструирующим, динамическим эффектом. Это связано с характером фундаментальных научно-технических тенденций.

Превращение атомной энергии в основную компоненту электроэнергетического баланса позволит перейти в промышленности и на транспорте, а также в земледелии и в добыче полезных ископаемых к методам, требующим больших, чем сейчас, удельных затрат электроэнергии. Такой переход вытекает из некоторых основных тенденций, о которых шла речь в этой книге. Решение продовольственной проблемы связано, как уже говорилось, с большими энергетическими затратами на производство удобрений, на орошение и водоснабжение. Относительное истощение сырьевых ресурсов означает увеличение удельных затрат энергии на добычу сырья. Во многих случаях это будет эффективнее, чем поиски энергетически более доступных месторождений, но требующие зато очень дорогой информации «знаю где». Электроника, превращаясь в основной рычаг реконструкции технологии, приведет к росту потребности в энергии в большом числе, отраслей. Таков же эффект применения полимеров и химии в целом, обещающих весьма радикальную революцию в использовании сырьевых ресурсов в технологии и в решении продовольственной проблемы. В последней трети нашего века темпы роста мощности электростанций и соответственно выработки электроэнергии будут, как ожидают, увеличиваться очень быстро и, что особенно важно, с заметным ускорением: мощность вырастет с 765 млн. квт в 1970 г. до 11 000 млн. квт в 2000 г. (из них 500 млн. — на атомных станциях). Особенно внушительное ускорение будет характерно для десятилетия 1990–2000 гг. Ввод новых мощностей более чем удвоит мощность электростанций (прирост — 6000 млн. квт — больше, чем вся мощность в 1990 г.), из них атомные станции дадут прирост 4000 млн. квт [46]. Таким образом, составив 50 % в общей мощности электростанций, атомные станции станут уже в 1990–2000 гг. не только преимущественной, но и преобладающей компонентой развития электроэнергетики. Теперь мы видим, что 2000 год как календарная дата достаточно близок к «2000 г.» как условной дате завершения основной научно-технической тенденции нового периода — периода технического воплощения неклассической науки.

Доклады на следующей, 8-й, Энергетической конференции (в Бухаресте в 1971 г.) позволяют видеть, что прогнозы 1968 г. в основном соответствовали реальным тенденциям [47].

В докладе Нафикса (председателя Федеральной энергетической комиссии США) «The Potential impact of environmental provisions atom elecfric utility systems» общая мощность намечена в объеме 668 млн. квт в 1980 г. и 1260 млн. квт в 1990 г., а мощность атомных станций составит 147 млн. квт в 1980 г. и 500 млн. квт в 1990 г.

В докладе Лякоста на той же конференции средний прирост мощности атомных станций на предстоящие 30 лет намечается на 7 % каждые 10 лет, и при выработке электроэнергии 10 триллионов квтч в 1980 г., 20 триллионов квтч в 1990 г. и 32 триллиона в 2000 г., доля атомных станций, равная 23 % в 1970 г., составит 30 % в 1980 г., 37 % в 1990 г. и 50 % в 2000 г. [48]

Физико-технический прогноз — возможность строительства реакторов-размножителей — позволяет правильно оценить тот экономический прогноз, который напрашивается при анализе проектировок 1967 г. Указанный прогноз — превращение атомной энергетики к началу XXI в. в преобладающую компоненту баланса электроэнергии. Из перспективы перехода к реакторам-размножителям следует, что подобное превращение является ступенью к еще более решительному преобладанию атомной энергетики. Можно представить себе, что реакторы-размножители будут обеспечивать нарастающее преобладание атомной энергетики, пока применение термоядерных реакций не снимет полностью проблему ограниченности и истощения энергетических ресурсов.

Перейдем к этой, более высокой ступени атомной энергетики. Она еще не может служить основой для прогнозов с такой степенью определенности, которая характерна для атомной энергетики, использующей деление тяжелых ядер. Мы и здесь встречаемся с соотношением: чем радикальнее прогнозируемая трансформация техники и экономики, тем неопределенней сам прогноз в смысле конкретных путей и сроков. Термоядерная энергетика обещает более глубокую трансформацию энергетики и более мощное «резонансное воздействие» на классическую энергетику, на характер труда и технологию, чем деление тяжелых ядер. Речь здесь идет о новой принципиальной физической схеме, которая гораздо больше отличается от всех путей использования тяжелых элементов, чем эти пути отличаются один от другого. Термоядерная энергетика, использующая примерно в десять раз большую долю внутренней энергии частиц, чем атомная энергетика, о которой до сих пор шла речь, основана не на делении тяжелых ядер урана и плутония, а на синтезе очень легких ядер. Уже говорилось, что в начале периодической таблицы Менделеева дефект массы (то, что было сопоставлено с компактностью упаковки ядерных частиц) быстро растет. Атомное ядро водорода, состоящее из одной частицы — протона, разумеется, не имеет дефекта массы, но уже более тяжелые ядра, содержащие две, три и т. д. частицы, обладают дефектом массы. Поэтому синтез легких ядер, образующий несколько более тяжелые ядра, освобождает энергию. Именно подобная реакция поддерживает энергию звезд. Звезды излучают энергию в пространство, но эта потеря энергии компенсируется синтезом легких ядер из водорода.

Наибольший интерес представляет следующая конкретная реакция синтеза. Перед нами — ядра дейтерия, уже известного нам изотопа водорода, т. е. ядра, каждое из которых включает кроме протона еще нейтрон и, таким образом, состоит из двух ядерных частиц. Существует изотоп водорода с тремя ядерными частицами в каждом ядре — протоном и двумя нейтронами. Он называется тритием. Дефект массы на одну частицу, т. е. удельный дефект массы, у трития несколько больше, чем у дейтерия. Если ядро дейтерия (один протон и один нейтрон) сталкивается с другим ядром дейтерия (еще один протон и еще один нейтрон), то могут образоваться одно ядро трития (протон и два нейтрона) и одно ядро обычного водорода (протон). Может быть и другой результат: слияние двух ядер дейтерия даст ядро изотопа гелия с тремя частицами — двумя протонами и нейтроном — и один свободный нейтрон.

Но, чтобы ядра слились, они должны приблизиться одно к другому на расстояние порядка их линейных размеров. Между тем ядра (в описываемом случае ядра дейтерия) имеют одинаковые электрические заряды и отталкивают друг друга. Такое отталкивание будет преодолено, если ядра обладают достаточно большой кинетической энергией, соответствующей температуре порядка ста миллионов градусов. Поэтому-то реакции синтеза легких ядер и называются термоядерными. При взрыве водородной бомбы иницирующий взрыв плутония или урана-235 создает температуру, необходимую, чтобы началась термоядерная реакция. Наиболее радикальная энергетическая революция, которую мы можем себе представить, исходя из уже известных нам физических принципов, состоит в использовании управляемой термоядерной реакции.

1 ... 27 28 29 30 31 32 33 34 35 ... 90 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название