ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда читать книгу онлайн
Не часто приходится держать в руках книгу, которая открывает новые миры, в которой сочетаются глубина мысли и блестящая языковая игра; книгу, которой удалось совместить ничем на первый взгляд не связанные сложные области знания.
Выдающийся американский ученый изобретает остроумные диалоги, обращается к знаменитым парадоксам пространства и времени, находит параллели между картинами Эшера, музыкой Баха и такими разными дисциплинами, как физика, математика, логика, биология, нейрофизиология, психология и дзен-буддизм.
Автор размышляет над одной из величайших тайн современной науки: каким образом человеческое мышление пытается постичь самое себя. Хофштадтер приглашает в мир человеческого духа и «думающих» машин. Это путешествие тесно связано с классическими парадоксами, с революционными открытиями математика Курта Геделя, а также с возможностями языка, математических систем, компьютерных программ и предметного мира говорить о самих себе с помощью бесконечных отражений.
Начав читать эту книгу,вы попадете в волшебные миры, отправитесь в путешествие, изобилующее увлекательными приключениями, путешествие, после которого вы по-иному взглянете на мир и на самого себя.
Переведенная на 17 языков, книга потрясла мировое интеллектуальное сообщество и сразу стала бестселлером. Теперь и русский читатель получил доступ к одной из культовых книг XX века.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Когда у вас имеется алгоритм разрешения, все теоремы системы приобретают конкретную характеристику. С первого взгляда может показаться, что правила и аксиомы формальной системы сами по себе характеризуют ее теоремы не менее полно, чем алгоритм разрешения; однако проблема здесь заключается в слове «характеризуют». Безусловно, как правила вывода, так и аксиомы системы MIU косвенно характеризуют строчки, являющиеся теоремами; еще более косвенно они характеризуют строчки, теоремами не являющиеся. Однако косвенная характеристика часто недостаточна. Если кто-нибудь утверждает, что он имеет в своем распоряжении характеристику всех теорем, но при этом тратит бесконечное время, чтобы установить, что данная строчка не является теоремой, вы, скорее всего, подумаете, что в его характеристике чего-то не хватает — она недостаточно конкретна. Именно поэтому так важно установить, есть ли в данной системе алгоритм разрешения. Положительный ответ будет означать, что вы всегда можете проверить, является ли данная строчка теоремой; при этом, какой бы длинной проверка ни была, она непременно придет к концу. В принципе, проверка — такой же простой, механический, конечный и верный процесс, как установление того, что первая буква строчки — M. Алгоритм разрешения — это «лакмусовая бумажка» для установления теоремности!
Кстати, одним из требований формальной системы является наличие алгоритма разрешения для аксиом: каждая формальная система должна иметь свою Лакмусовую бумажку для определения аксиомности. Таким образом, у нас не будет проблем по крайней мере в начале работы. Разница между множеством аксиом и множеством теорем в том, что первые всегда имеют алгоритм разрешения, в то время как последние могут его и не иметь.
Уверен, что вы согласитесь, что, когда вы начали работать с системой MIU, вам пришлось столкнуться именно с этой проблемой. Вам была известна единственная аксиома системы и простые правила вывода, косвенно характеризующие теоремы — и все же было неясно, каковы последствия этой характеристики. В частности, было совершенно непонятно, является ли MU теоремой.
Рис. 12. М. К. Эшер. «Воздушный замок» (гравюра на дереве), 1928.
Двухголосная инвенция
или Что Черепаха сказала Ахиллу (записано Льюисом Кэрроллом) [8]
Ахилл перегнал Черепаху и с комфортом уселся отдыхать на ее широкой спине.
«Так вам все же удалось добежать до финиша?» — сказала Черепаха. «Несмотря на то, что дистанция состояла из бесконечного ряда отрезков? Я-то думала, какой-то умник доказал, что это невозможно сделать?»
«Это ВОЗМОЖНО сделать», — сказал Ахилл: «И я это СДЕЛАЛ! Solvitur ambulando. Видите ли, дистанции постоянно УМЕНЬШАЛИСЬ…»
«А если бы они постоянно УВЕЛИЧИВАЛИСЬ?» — перебила Черепаха, — «Что тогда?»
«Тогда бы меня здесь еще не было,» — скромно ответил Ахилл, — «А Вы уже успели бы обежать несколько раз вокруг света.»
«Вы весьма великодушны, Ахилл. Вы меня просто подавили… я хочу сказать, придавили, поскольку вы нешуточный тяжеловес. А теперь, не угодно ли вам послушать про такую беговую дорожку, о которой большинство людей воображают, что могут преодолеть ее в два-три шага, когда на самом деле она состоит из бесконечного числа расстояний, где каждое последующее больше предыдущего?»
«С превеликим удовольствием,» — ответствовал греческий воин, доставая из шлема (в те дни мало кто из греческих воинов мог похвастаться карманами) огромный блокнот с карандашом. «Приступайте к своему рассказу, да говорите, пожалуйста, помедленнее — ведь стенография еще не изобретена!»
«Этот прекрасный Первый Постулат Эвклида…» — пробормотала мечтательно Черепаха, — «вы восхищаетесь Эвклидом?»
«Страстно! Постольку, конечно, поскольку можно восхищаться трудом, который будет опубликован лишь через несколько столетий…»
«Давайте, в таком случае, рассмотрим первые два пункта его доводов, и выводы, которые из них следуют. Будьте так любезны, запишите их к себе в блокнот — для удобства обозначим их А, В и Z:
(A) Вещи, равные одному и тому же, равны между собой.
(B) Две стороны этого треугольника суть вещи, равные одному и тому же.
(Z) Две стороны этого треугольника равны между собой.
Читатели Эвклида согласятся, я думаю, что Z логически следует из А и В, так что тот, кто согласен с истинностью А и В, ДОЛЖЕН считать истинным и Z?»
«Несомненно! Уж с ЭТИМ-то легко согласится любой старшеклассник — как только старшие классы будут изобретены, каких-нибудь пару тысяч лет спустя.»
«И если какой-нибудь читатель не принимает А и В за истинные, он, тем не менее, должен согласиться с тем, что ВЗЯТАЯ ЦЕЛИКОМ, эта последовательность имеет смысл?»
«Без сомнения, такого читателя можно вообразить. Он мог бы сказать: „Я принимаю за истинное Гипотетическое Утверждение, что ЕСЛИ А и В истинны, то Z должно быть тоже истинно.“ Такой читатель поступил бы мудро, если бы он оставил Эвклида и занялся футболом».
«А что, если какой-нибудь другой читатель сказал бы: „Я принимаю за истинные А и В, но НЕ Гипотетическое Утверждение“?»
«Наверное, и такой читатель мог бы существовать. Ему, впрочем, тоже было бы лучше заняться футболом.»
«И никакой из этих читателей ПОКА не обязан соглашаться с тем, что логически Z должно быть истинно?»
«Совершенно верно,» — кивнул Ахилл.
«Теперь представьте на минуту, что я — тот второй читатель, и попробуйте логически заставить меня признать, что Z истинно.»
«Черепаха, играющая в футбол, была бы…» — начал Ахилл.
«… совершеннейшей аномалией, конечно,» — торопливо перебила Черепаха. «Не будем отвлекаться; сначала давайте разберемся с Z, а потом уж поговорим о футболе!»
«Я должен заставить вас принять Z, не так ли?» — задумчиво пробормотал Ахилл. «И вы утверждаете, что принимаете А и В, но тем не менее не принимаете Гипотетическое Утверждение…»
«Назовем его С», — вставила Черепаха.
«Но вы не принимаете
(С) Если А и В истинны, следовательно Z должно быть истинно.»
«Именно это я и утверждаю,» — сказала Черепаха.
«В таком случае я должен попросить вас согласиться с С.»
«Я, пожалуй, уважу вашу просьбу, как только вы занесете ее в свой блокнот. Кстати, что у вас там еще записано?»
«Только несколько заметок на память,» — сказал Ахилл, нервно шурша страницами: «несколько заметок о… о сражениях в которых я отличился!»
«Здесь полно чистых страниц, как я погляжу!» — радостно заметила Черепаха. «Нам понадобятся ВСЕ они, до последней странички!» (Ахилл содрогнулся.) «Теперь пишите за мной:
(A) Вещи, равные одному и тому же, равны между собой.
(B) Две стороны этого треугольника суть вещи, равные одному и тому же.
(C) Если А и В истинны, следовательно Z должно быть истинно.
(Z) Две стороны этого треугольника равны между собой.»
«Вы должны бы называть последнее утверждение D, а не Z, поскольку оно прямо следует за первыми тремя. Если вы принимаете А, В, и С, вам ПРИДЕТСЯ принять Z.»
«Почему это мне „придется“?»
«Потому что Z ЛОГИЧЕСКИ следует из них. Если А, и В, и С истинны, Z ДОЛЖНО быть истинно. С этим-то вы, надеюсь, не станете спорить?»
«Если А, и В, и С истинны, Z ДОЛЖНО быть истинно,» — в раздумьи повторила Черепаха. «Это еще одно Гипотетическое Утверждение, не правда ли? И если я его не приму, я все еще могу считать истинными А, В и С, но не принимать Z, не так ли, мой друг?»
«Пожалуй, что и так,» — согласился простодушный герой, — «хотя такое упрямство было бы просто феноменально. Все же, это событие ВОЗМОЖНО. А раз так, я должен попросить вас принять еще одно Гипотетическое Утверждение.»
«Прекрасно! Я согласен принять и это Утверждение, как только вы его запишете. Мы назовем его D.