Физика и философия
Физика и философия читать книгу онлайн
Вернер Карл Гейзенберг (нем. Werner Heisenberg; 5 декабря 1901, Вюрцбург — 1 февраля 1976, Мюнхен) — немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат нобелевской премии по физике (1932). Умер в 1976 году от рака.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
С другой стороны, едва ли можно сказать, что так уж много достигают, выражая новейшие знания на старом языке. Философские системы прошлого сформировались из всей совокупности знаний того времени и поэтому соответствуют тому образу мышления, какой приводил к этим знаниям. Имеется полное основание считать, что философы, размышлявшие о природе много столетий назад, не могли предвидеть развитие квантовой теории или теории относительности. Поэтому понятия, к которым философы давно прошедшего времени пришли на основе анализа своих знаний о природе, не могут ныне соответствовать явлениям, могущим быть наблюдаемыми только с помощью сложнейших — технических средств нашего времени.
Но прежде чем будут обсуждены философские выводы из теории относительности, следует ещё кратко обрисовать её дальнейшее развитие.
Гипотетическая субстанция «эфир», игравшая столь важную роль в более ранних истолкованиях теории Максвелла в XIX столетии, как это уже упоминалось выше, была устранена теорией относительности. Это обстоятельство часто выражают также в виде утверждения, что теорией относительности было устранено абсолютное пространство. Но такое утверждение нуждается в некоторых оговорках. Правда, согласно специальной теории относительности, больше нельзя выбрать определённую систему отсчёта, относительно которой эфир покоился бы и которая по этой причине заслуживала бы название «абсолютной». Но было бы всё же неправильно утверждать, что теперь пространство будто бы потеряло все физические качества. Уравнения движения материальных тел или полей всё ещё принимают различный вид в «обычной» системе отсчёта и в другой системе, равномерно вращающейся относительно «обычной» системы отсчёта. Если ограничиваются теорией относительности 1905, 1906 годов, то существование, центробежных сил во вращающейся системе отсчёта доказывает, что существуют физические свойства пространства, позволяющие отличить вращающиеся системы от невращающихся.
В философском плане это не кажется удовлетворительным, и было бы предпочтительнее приписывать физические свойства только физическим объектам, как, например, материальным телам или полям, а не пустому пространству. Однако если ограничиться рассмотрением электромагнитных процессов и механических движений, то наличие этих свойств у пустого пространства следует просто из фактов, которые не могут быть оспорены, например из факта существования центробежной силы.
Тщательный анализ этой ситуации привёл Эйнштейна примерно десятилетие спустя к весьма важному обобщению теории относительности, обычно называемому «общей теорией относительности». Но, прежде чем перейти к изложению основных идей новой теории, необходимо сказать несколько слов о степени достоверности, которая гарантирует справедливость этих двух разделов теории относительности. Теория, созданная в 1905–1906 годах, то есть так называемая «специальная» теория относительности, основана на множестве очень точно проверенных экспериментальных фактов — на опытах Майкельсона и Морлея и многих других подобных экспериментах, на эквивалентности массы и энергии в очень большом числе радиоактивных процессов, на очень точно наблюдаемой зависимости времени жизни радиоактивных объектов от скорости радиоактивных частиц и т. д. Эта теория является, таким образом, твёрдым, надёжным основанием современной физики и при нашем сегодняшнем знании не может быть оспорена.
В отношении общей теории относительности экспериментальные доказательства, напротив, гораздо менее убедительны, так как в общем экспериментальный материал очень ограничен. Имеется только несколько астрономических наблюдений, с помощью которых можно проверить справедливость предположений теории относительности. Поэтому вторая теория более гипотетична, чем первая.
Решающая фундаментальная гипотеза общей теории относительности — предположение о тождестве тяготеющей и инертной масс. Весьма тщательные измерения показали, что масса тела, определяемая его весом, в точности пропорциональна другой массе, определяемой инерцией тела. Даже самые точные измерения никогда не давали никаких отклонений от этого закона. Если этот закон имеет универсальное значение, то силы тяготения могут быть поставлены в параллель с центробежными или другими силами, возникающими как реакция на инерционные воздействия. Так как центробежные силы должны быть поставлены в связь с физическими свойствами пустого пространства, как это показано выше, то Эйнштейн пришёл к гипотезе о том, что силы тяготения также соответствуют свойствам пустого пространства. Это был очень важный шаг, который тотчас же сделал необходимым новый шаг в том же направлении. Мы знаем, что силы тяготения вызываются массами. Поэтому если тяготение связано со свойствами пространства, то эти свойства пространства должны быть порождены массой или испытывать воздействия масс. Центробежные силы во вращающейся системе отсчёта, возможно, должны вызываться вращением относительно этой системы весьма удалённых масс вселенной.
Чтобы провести в жизнь программу, намеченную в этих утверждениях, Эйнштейн должен был связать эти основополагающие физические соображения с математической схемой общей геометрии, развитой Риманом. Так как свойства пространства, очевидно, непрерывно меняются с изменением гравитационных полей, то геометрия мира должна быть подобной геометрии искривлённых поверхностей, на которых прямые линии евклидовой геометрии должны быть заменены геодезическими линиями, то есть линиями наименьшей длины, и кривизна непрерывно меняется от точки к точке. В качестве окончательного результата Эйнштейн смог предположить в конце концов математическую формулировку соотношения между распределением масс и параметрами, определяющими геометрию. Эта теория правильно отображает общеизвестные факты, характеризующие тяготение. Она в очень хорошем приближении идентична с обычной теорией тяготения и, кроме того, предсказывает некоторые очень интересные эффекты, лежащие как раз на границе возможностей измерительных приборов. К ним относится, например, влияние силы тяготения на излучение.
Если массивная звезда испускает монохроматическое излучение, то световые кванты, удаляясь от звезды в поле её тяготения, теряют часть своей энергии. Отсюда следует, что испускаемые спектральные линии должны испытывать смещение к красному концу спектра. До сих пор нет ещё, как очень ясно показало обсуждение Фрейндлихом проведённых доныне опытов, ни одного не вызывающего возражений экспериментального доказательства наличия этого красного смещения. Но было бы также преждевременно заключить, что опыты якобы опровергли предсказания теории Эйнштейна.
Луч света, проходящий вблизи Солнца, должен отклоняться полем тяготения Солнца. Это отклонение имеет, как экспериментально показано Фрейндлихом и другими астрономами, предсказываемый порядок величины. Но совпадает ли отклонение точно с предсказываемой теорией Эйнштейна величиной — этот вопрос остался ещё не решённым.
Лучшим экспериментальным доказательством справедливости общей теории относительности является, кажется, движение перигелия орбиты планеты Меркурий, величина которого, по-видимому, находится в очень хорошем согласии с предсказаниями теории.
Хотя, таким образом, экспериментальный базис общей теории относительности ещё довольно узок, она, однако, содержит идеи огромнейшей степени важности. В течение всего времени развития математики от античности до XIX столетия евклидова геометрия рассматривалась как самоочевидная. Аксиомы Евклида имели отношение к основаниям любой математической теории геометрического характера и представляли собой базис, который не мог быть поставлен под сомнение. Затем в XIX столетии математики Больяй и Лобачевский, Гаусс и Риман нашли, что можно построить другие геометрии, которые могут быть развиты с той же математической строгостью, что и евклидова. Поэтому вопрос о том, какая геометрия является справедливой, с этого времени становится эмпирическим. И только в трудах Эйнштейна этот вопрос смог быть поставлен как физический. Геометрия, о которой идёт речь в общей теории относительности, включает в себя не только геометрию трёхмерного пространства, но и четырёхмерное многообразие пространства и времени. Теория относительности устанавливает связь между геометрией этого многообразия и распределением масс во вселенной. Значит, эта теория поднимает в новой форме старые вопросы пространства и времени в случае очень больших расстояний, и она предполагает ответы, которые могут быть проверены наблюдениями.