Хаос и структура
Хаос и структура читать книгу онлайн
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число. "Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
=y'
Что такое χ и dx, этого мы сейчас можем и не разъяснять, так как χ это есть просто независимое переменное, a dx—то его приращение, в силу которого оно вступает в процесс становления. Так как здесь идет речь о независимых величинах, о произвольных величинах, то, очевидно, весь наш интерес должен относиться к тому, что от них зависимо, и к самой форме этой зависимости. Общее понятие нам также известно. Но уже это dy может получить более точное определение из соответствующего видоизменения вышеданной формулы производной. А именно, из нее вытекает, что
dy=y'dx.
Иначе говоря, оказывается, что о dy можно судить на основании у' и dx, т. е. приращение функции зависит от производной и от приращения аргумента. Здесь, однако, необходимо соблюдать более точный способ рассуждения и выражения, и мы получаем понятие дифференциала.
Прежде всего dx, приращение независимого переменного, стремящееся к нулю, в отличие от Ах, от приращения, вообще называется дифференциалом независимого переменного. Дифференциал аргумента есть, следовательно, бесконечно–малое его приращение. Соответственно необходимо проводить различие и между приращениями функции. Когда растет аргумент, соответственно растет и функция; и в общем случае, когда не становится вопрос о характере этих приращений, приращение функции мы обозначаем через Δy. Однако нас интересует именно бесконечно–малое наращение аргумента. Тогда соответственно получит специфическую окраску и приращение функции. Вот это–то приращение функции в условиях бесконечно–малого нарастающего аргумента и называется дифференциалом функции; и оно есть произведение производной на бесконечно–малое приращение аргумента (т. е. y'dx).
Но и в этом определении еще не выявляется с полной отчетливостью и выпуклостью смысловая структура дифференциала. Это определение есть ведь не что иное, как перефразировка логических моментов, входящих в понятие производной. Чтобы выявить наружу этот скрытый принцип дифференциала, представим себе процессы, дающие производную, более подробно.
Если разница
стремится к нулю и есть величина бесконечно–малая, то, обозначая ее через ε, получаем
Левая часть этого равенства есть общее приращение функции Ау. В правой же части f'(x)dx есть, по предыдущему, дифференциал функции, dy. Стало быть, это равенство можно переписать так:
∆y = dy + edx,
т. е. общее приращение функции отличается от дифференциала функции на величину edx. Если отдать себе строгий отчет в этой величине, то станет ясным и все отличие приращения функции от дифференциала функции. Что такое zdxl dx есть бесконечно–малое приращение аргумента, равно как и ε—тоже бесконечно–малое. Умножение одного на другое дает, очевидно, бесконечно–малую величину высшего порядка, чем просто dx. Бесконечно–малое высшего порядка есть то, которое имеет высшую малость, т. е. такое, которое мельче другого бесконечно–малого, zdx мельче, чем просто dx. Но так как dy—f'(x)dx есть бесконечно–малое первого порядка (поскольку f'(x) есть какое–нибудь число, не равное нулю), то edx мельче, чем f'(x)dx, и, следовательно, обсуждая ∆у, этой величиной можно пренебречь. Поэтому практически вместо ∆у достаточно оперировать с dy, т. е. общее приращение функции можно заменять ее дифференциалом, хотя это и разные вещи.
Таким образом, можно сказать, что производная есть предел отношения двух дифференциалов — функции и аргумента.
После этого мы можем перейти и к понятию интеграла.
Производная показывает нам, что делается с функцией, когда она погружается в стихию становления. Расплываясь по морю этой бесконечности, мы можем и совсем забыть то, с чем мы вошли в это море. Но мы можем и помнить, можем вспоминать то идеальное неподвижное, статически–числовое, что оставили мы на берегу. И когда мы вспоминаем, мы невольно вносим какую–то устойчивость в наше становление, начинаем видеть сквозь мглу становления контуры оставленной темы, статической идеи—правда, теперь уже сильно деформированной и часто принимающей совершенно неузнаваемый вид. Это инобытийно–деформированная функция, пребывающая в этом деформированном виде неизменной среди непрестанного потока бесконечности, и есть производная. Однако мы можем задаться и другой задачей.
Мы можем в своем сравнении инобытийной функции с первообразной останавливаться не только на инобытийной [функции], но и на первообразной. Можно не только первообразную функцию рассматривать в сфере инобытия и—получать производную, но можно и производную рассматривать в сфере первообразий и — получать эту самую первообразную. И как первообразная претерпевает деформацию при переходе в инобытие, так и производная претерпевает деформацию при переходе из инобытия в бытие. Тот и другой процесс, конечно, являются взаимообразными. И принципиально должно быть ясно, что если мы сумеем переходить от «первообразного» бытия к «производному» инобытию, то также (или в значительной мере так) мы должны уметь переходить и обратно, от инобытия к бытию. Вообще говоря, первообразная функция, полученная из инобытийной путем исключения инобытия, и есть интеграл.
Интеграл количественно ничем не отличается от любой величины. Всякая величина может быть интегралом. Однако если употребляется такой термин, то, конечно, не для того, чтобы еще другим словом назвать то, что обычно называется величиной. Название «интеграл» указывает на происхождение величины, а не просто на самую величину в ее чисто количественном смысле. В понятии интеграла также мыслится процесс, и притом бесконечный процесс, как и в понятии производной; и это не может быть иначе, раз мы условились рассматривать не только инобытие в сфере бытия, но и бытие в сфере инобытия. В бытие тоже вносится момент инобытия, а именно бытие — в нашем случае первообразная функция — мыслится не само по себе, в своей полной непосредственности (тогда была бы просто арифметическая величина, и больше ничего), но в своем происхождении, в своей полученности из недр становящегося бытия.
Каким же образом можно получить из инобытия бытие, из дифференциала интеграл? Что тут за процесс происходит? Когда мы имеем производную и, следовательно, дифференциал функции, мы погружены в созерцание бесконечного процесса и фиксируем в нем твердые контуры закона, управляющего этим бесконечным процессом. Наша новая задача заключается в том, чтобы созерцать этот бесконечный процесс не в целях фиксации закона этого же самого инобытийного процесса, но в целях фиксации функции, еще не перешедшей ни в какое инобытийное становление. Мы продолжаем рассматривать эту становящуюся стихию, но фиксируем в ней не ее собственную закономерность, но изначальную функциональную закономерность, инобытие которой и привело к этой становящейся стихии. Соответственно с этим мы уже иначе должны расценивать самый процесс становления.
Когда мы искали закон инобытия, мы должны были скользить по самому инобытию, с тем чтобы пронаблюдать этот закон. В глубине этого распыления и появлялся его закон—в виде производной. В случае же, когда надо прийти к первообразному бытию, мы тоже скользим по инобытию, но, очевидно, не с целью разъединить и распылить, но с целью обобщить, так как первообразная функция перешла в производную именно благодаря распылению и становлению. Обратный процесс, следовательно, есть восстановление и объединение. Только этим путем мы можем вернуться к первообразной функции, потому что только этим путем мы и уходили от нее. Однако, как было недостаточно в первом случае видеть бесконечный процесс распыления, а нужно было еще узреть скрытый за ним и руководящий им закон инобытия (производную), так и здесь недостаточно одного простого суммирования и воссоединения распыленных моментов, а нужно стараться увидеть скрывающийся за этим закон этого объединения, закон этого суммирования, восстановляющего бытие в его первоначальной данности. Иначе мы потерялись бы в дебрях инобытия—и в первом, и во втором случае.