Инфодинамика, Обобщённая энтропия и негэнтропия
Инфодинамика, Обобщённая энтропия и негэнтропия читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
2. Кибернетическое понятие информации, которое было сформулировано в основополагающих работах Н.Винера, осо-бенно К.Шеннона в 1948 году [ 25 ]. В теории Шеннона под информацией понимают только те передаваемые сообщения, которые уменьшают неопределённость у получателя инфор-мации. Следовательно информация измеряется разностью энтропий (Н) системы до и после получения информации. Если целевые критерии системы-приёмника информации обо-значить В, а событие в системе-передатчике А, то количество передаваемой информации:
J (A, B) = H(B) - H(B / A) > - lg2 P(B) + lg2 P(B / A)
В формуле выражен относительный характер среднего значения информации, как показателя зависимости между двумя событиями. Из формулы следует, что не существует абсолютной информации: есть информация относительно оп-ределённого события (критерия, цели) или объекта, содер-жащаяся в другом событии. Измерение энтропии системы имеет ценность потому, что позволяет оценить влияние собы-тия А на событие В в форме разности
Н(В) - Н(В / А), т.е. по количеству информации. Последнее является мерой отношения, взаимосвязи между системами, явлениями, процессами, а не показателем состо-яния систем.
Концепция Шеннона в принципе не вызывает возраже-ний и нашла широкое применение. Однако, существующие формулы теории информации предназначены для обмена ин-формацией между относительно простыми системами и по ка-налам связи с одно-трех-мерными сигналами. При примене-нии формул для расчёта обмена информацией между сложны-ми системами (обладающими высокими ОЭ и ОНГ), необхо-димо их уточнять и дополнять с учётом следующих факторов.
1. Целевые критерии реальных сложных систем зависят обычно не от одного события или фактора другой системы, а от многих. Последние могут быть зависимыми также между собой. В таком случае приёмник информации получит одно-временно многомерную информацию от многих источников в комплексе.
2. При уменьшении ОЭ (увеличении ОНГ) системы, принимающего информацию, используются не только пара-метры состояния отправной системы, но и обобщённые поня-тия, символы, формулы, закономерности и т.д. Эта, т.н. априорная информация, может быть получена как от системы приёмника, так и отправителя. Влияние этой априорной ин-формации должно быть учтено при расчётах передачи ин-формации.
3. Нельзя исключить возможность, что в результате по-лучения информации общая максимально возможная энтро-пия системы-модели увеличивается. Могут появляться ранее неучтённые факторы-размерности или расширены пределы независимых переменных. Если это происходит, необходимо это проверить и учесть.
Таким образом, практические расчёты передачи инфор-мации значительно сложнее, чем просто оценка уменьшения ОЭ системы, особенно для сложных многофакторных систем. Улучшенную, но не совершенную, формулу для расчёта ин-формации можно представить следующим образом (Н можно заменить на ОЭ):
J (A, B) = H (B) + DиH (B) - е H (B / Ai), где:
H (B) - энтропия системы по целевому критерию В,
DиH(B) - увеличение максимальной энтропии системы В в результате расширения пространства состояния,
H(B/Ai) - условная энтропия относительно целевого критерия В при выполнении события Ai и связанных с этим закономерностей и зависимых событий,
Ai - множество событий, закономерностей и факторов, влияющих на критерий В.
Так как в мире существует неисчислимое количество разных и разнообразно связанных систем, то и информация между ними может иметь огромное количество вариантов. Особенности и степень обобщённости понятий необходимо учитывать при уточнении данных и формул расчёта. Однако, для избежания ошибок при истолковании и анализе инфор-мационных процессов, нельзя отклоняться от их основного содержания, от уменьшения ОЭ. Этот основной постулат наи-более общий и действует для любой системы универсума: как в неорганическом мире, так и в живых организмах, в соз-нании и в космосе. Сущность информации заключается в сле-дующем:
Обобщённой информацией является любая связь или отношение между системами, в результате которой повы-шается обобщённая негэнтропия (ОНГ) хотя бы одной системы.
Так как элементы системы можно рассматривать как от-дельные системы, то и связи между элементами внутри систе-мы могут являться информацией. В то же время далеко не все связи или сообщения являются информацией. Если они не повышают ОНГ, они могут являтся шумом, деструктирую-щим действием, в отдельных случаях, в живой природе и дез-информациeй. Слово "обобщённость" включено в дефиницию для того, чтобы подчеркнуть, что универсальность понятия достигается в том случае, если учтены и оптимизированы все влияющие на целевые критерии факторы. К этим относятся и априорные формы информации. В случае упрощённых мо-делей систем и инфопередаче по классическим каналам связи можно применять и упрощённую дефиницию информации:
Информацией является связь или отношение между системами, в результате которой повышается негэнтропия системы-приёмника.
Одним из основных показателей состояния и форм су-ществования любых систем является ОНГ (связанная инфор-мация). Каждая система характеризуется обеими показа-телями как ОЭ, так и ОНГ. Их измеряют в одних и тех же единицах. ОНГ имеет отрицательный знак, но абсолютные цифры ОНГ и ОЭф не равны. Для одной системы и одного целевого критерия эти показатели связаны следующей формулой:
ОЭф + ОНГф = ОЭм , где:
ОЭф - фактическая ОЭ системы,
ОНГф - фактическая ОНГ системы,
ОЭм - максимально возможная ОЭ системы.
Если известны 2 из трёх показателей, то третий можно рассчитать. Таким образом, каждая система имеет три час-тично зависимые характеристики состояния. Это имеет какую-то аналогию с распределением в системе внутренней энергии.
U = F + G = F + T . S, где:
U - внутренняя энергия,
F - свободная энергия,
G - связанная энергия,
S - энтропия,
T - абсолютная температура.
ИНФОДИАЛЕКТИКА
Философская сущность понятия информации до насто-ящего времени полностью не выяснена. Классики теории ин-формации и кибернетики не дали проблеме исчерпывающего объяснения. Н.Винер указал, что информация является ин-формацией, не материей или энергией. Под понятием "ма-терия" он подразумевал вещество и массу. Если под материей подразумевать всю объективную реальность, то информация содержится в этом понятии. Указание того, чем информация не является, не решает проблему. Дефиниция, что инфор-мация является мерой упорядоченности, организованности не решает вопрос, на основании каких критериев устанавли-вается эта мера, и относительно чего?
Многие заблуждения вызваны т.н. теорией отражения диалектического материализма [46, 47]. Уже это слово - отражение, может вызвать только недоумение. Полное отра-жение мира во всем его многообразии или даже его ма-ленькой части, невозможно. Захламление сознания несущест-венными деталями только затруднила бы процессы обработки информации и моделирования. В действительности как созна-ние, так и органы приёма информации выборочно принимают её, обрабатывают и сохраняют в памяти. В публикациях опи-сано много вариантов т.н. отражательной концепции инфор-мации. И.В.Новик связывает информацию с упорядоченным отражением, тогда как неупорядоченное хаотическое отраже-ние обозначается понятием "шум" [ 36 ]. Информацию старались по разному соединить с отражением. Её определили как сторону (часть) или вид (форма) отражения, категорию отражения, разнообразие отражения, "передаваемую" часть отражения, инвариант отражения, необходимую предпосылку отражения, сторону отражения, допускающая передачу и объективирование, характеристику, аспект отражения, актив-ное, целесообразное отражение. Бросается в глаза, что поня-тие "отражение" не содержит дополнительную информацию и его параллельное информации рассмотрение не имеет смысла.
В процессе передачи информации решающее значение имеет система принимающая её, точнее ОНГ системы. Дейст-вительно, если не было бы системы приёма с его ОНГ, передача информации не могла бы состоятся. Следовательно основную роль в приеме, выборе и оценке имеет ОНГ или связанная информация в системе. Информация является функцией процесса, ОНГ - функцией состояния системы и имеет свойства инерции и памяти.