Хаос и структура
Хаос и структура читать книгу онлайн
"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число. "Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Таково это первое—и, на наш взгляд, огромное—достижение математического метода в логике—это понимание мышления как функции от материальных вещей.
Обозначим материальную вещь через χ, понимая ее как то независимое переменное, от изменений которого будет зависеть все прочее. Этот χ принципиально неисчерпаем и бесконечен (вспомним ленинский стакан в знаменитой речи о профсоюзах). Этому χ соответствует адекватное существенное отражение, такое же неисчерпаемое и такое же бесконечное, как и сам х. Это существенное отражение, очевидно, является определенной функцией от аргумента х. Назовем ее у. Ясно, что человеческое знание, вообще говоря, есть некоторое отношение между этими χ и у. От изменения этого отношения между вещью и ее отражением зависит и степень, равно как и качество человеческого мышления и знания об этой вещи.
Итак, отражение вообще есть функция вещей материи; и поскольку мышление относится к сфере отражения, и само мышление тоже есть функция материи. Тут, однако, не надо сбиваться с толку этой точной терминологией и надо понимать ее только так, как она сама на это уполномочивает. Во–первых, если мы говорим, что мышление есть функция материи, то этим вовсе не говорим, что мышление есть функция какого–то одного переменного. Вещь вовсе не есть какое–нибудь одно переменное. Это—множество разнородных переменных, если не прямо бесконечное число разного рода переменных. Раз вещь бесконечна, то, значит, она состоит и из бесконечного количества переменных, развивающихся к тому же в самых разнообразных и часто противоположных направлениях. Мышление поэтому, выражаясь математическим языком, есть обязательно функция многих переменных, даже когда оно относится к какой–нибудь одной, строго определенной вещи. И если мы сказали только об χ, то это было сказано только для краткости и только условно. На самом же деле это и х ии х 2, и х 3и т. д. и т. д. Правда, для простоты и удобства исследования мы можем тут, как и в математическом анализе, изучать всякую функцию как функцию одного переменного, давая всем ее аргументам, кроме одного, как говорят, «произвольно выбранное значение», так что переменной величиной из всех аргументов остается только один.
Во–вторых, если мы говорим, что мышление есть функция материи, то так это и надо понимать, не больше и не меньше того.
И прежде всего этим совершенно не утверждается, что между материей и мышлением только и существует функциональное отношение, и никакое другое. Мы говорим только то, что в данном случае, а не вообще, что именно здесь, а не везде, что именно в логике, а не вообще где бы то ни было, — нас интересует функциональное отношение. Но вообще говоря, отношение между материей и мышлением, равно как и отношения, наличные в самой материи, отнюдь не есть только функциональные отношения. Мышление всегда принадлежит какому–нибудь субъекту, а субъект есть часть все той же материальной действительности. Отношение материи к мышлению в конце концов сводится опять–таки к отношениям внутри самой же материи, т. е. к материальным отношениям. А это уже есть не только функция. Однако нам здесь нужно пока только функциональное отношение между материей и мышлением. И видеть его, рассматривать отдельно, анализировать как таковое мы имеем полнейшее право как и в математике, так и в логике. И если такое абстрагирование не помешало математике остаться вполне реальной наукой, наукой о действительности, и, даже наоборот, если оно–то как раз и раскрыло здесь подлинную объективную реальность мышления, то, очевидно, это абстрагирование функций из цельной действительности сохранит и для логики ее реализм и даже усилит ее объективно–реальное значение.
3. ИЗМЕНЕНИЯ ЭТИХ АРГУМЕНТА И ФУНКЦИИ И ОТНОШЕНИЕ МЕЖДУ ЭТИМИ ИЗМЕНЕНИЯМИ
1. Итак, мы имеем некую систему независимых переменных или, пусть скажем, некий аргумент дс, материальную вещь, и — функцию от этого, отражение и, стало быть, мышление, у. Будем теперь наблюдать, как меняется наш х.
Покамест мы имеем просто отношение у к х, это значит, что мы находимся вообще в области знания, ибо отношение существенного отражения к самой вещи есть не что иное, как именно рассмотрение вещи в свете этого отражения и этого отражения—в свете соответствующей материальной вещи. Это есть знание, и это есть мышление — наиболее полное и наиболее целостное. Познание ведь и есть не что иное, как известное отношение между отражением вещи и самой вещью. Но вот вещь меняется, и соответственно—меняется и ее существенное отражение. Что тут происходит с познанием и, следовательно, со знанием?
Вещи меняются, во–первых, непрерывно и, во–вторых, прерывно, скачкообразно. Для наших целей сейчас особенно важно непрерывное изменение, т. е. сплошное становление вещи. Остановимся на нем. Итак, χ непрерывно меняется. Так как у есть функция от χ, то, следовательно (для случая непрерывной функции), непрерывно меняется и у. X изменился на некоторую величину, у изменился тоже на некоторую величину (уже свою собственную). X изменился на бесконечно–малую величину, и у—тоже. Тут, между прочим, чрезвычайно важна эта идея бесконечно–малых изменений существенного отражения, а значит, и мышления. Конечно, мы очень часто и без этого возражаем против метафизики, против неподвижности вещей и мышления. Однако большею частью эти возражения остаются только на бумаге. Мышление меняется—кто же будет отрицать эту азбучную истину? Но это, конечно, не есть марксизм. Очень легко отделаться общей фразой и не ставить вопроса во всей глубине. А вся глубина этого вопроса заключается в том, что мышление меняется именно непрерывно, что оно есть сплошное становление, т. е. что все его элементы (напр., понятия или суждения)—переменные величины в смысле математического анализа, т. е. что эти изменения происходят здесь бесконечно–малыми приращениями. Только дифференциальное и интегральное исчисления и могут обосновать для нас эту подвижность и текучесть самих понятий, самих сущностей. То, что они прерывны, это знают все. Но то, что они в то же самое время еще и непрерывно становятся, это знает мало кто. И покамест эта цитадель метафизики не будет разрушена, нечего и думать идти за Лениным, когда он говорит, что «не только явления преходящи, подвижны, текучи, отделены лишь условными гранями, но и сущности вещей так же» (Филос. тет. 263), что «всесторонняя, универсальная гибкость понятий, гибкость, доходящая до тождества противоположностей, — вот в чем суть» (110), что понятия есть «учеты отдельных сторон движения, отдельных капель ( = «вещей»)», отдельных «струй», в то время как бытие есть «река и капли в этой реке» (144). Поэтому непрерывность, бесконечно–малое изменение всякого понятия, суждения, умозаключения и всего мышления в целом, заповеданное Лениным, должно быть зафиксировано нами во всей точности, именно с математической точностью.
2. Итак, χ меняется и у меняется. В каком же отношении окажется теперь наш аргумент д: и наша функция у в условиях своего непрерывного изменения, т. е. в условиях изменения на бесконечно–малые величины? Ясно, что это отношение будет уже не то, что раньше между χ и у как таковыми. И что же это за отношение? Если иметь в виду, что здесь речь идет о непрерывном изменении вещи, а непрерывное изменение вещи есть именно то, которое мы воспринимаем чувственно, и если принять во внимание, что как раз наша чувственность обладает существенным признаком в сравнении с мышлением, непрерывной и чисто непосредственной текучестью и становлением, то мы не ошибемся, если скажем, что отношение бесконечно–малых приращений наших функции и аргумента, т. е. отношение непрерывного становления соответствующего отражения и вещи, есть не что иное, как сфера самой обыкновенной человеческой чувственности, но взятой в том или ином пределе.
3. Чистая непосредственная чувственность, если она лишена абсолютно всякого оформления, есть некий неразличимый туман, некая сплошная иррациональность, реально даже не существующая в человеческом опыте, а являющаяся лишь некоторой абстракцией.