-->

Хаос и структура

На нашем литературном портале можно бесплатно читать книгу Хаос и структура, Лосев Алексей Федорович-- . Жанр: Философия / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Хаос и структура
Название: Хаос и структура
Дата добавления: 15 январь 2020
Количество просмотров: 283
Читать онлайн

Хаос и структура читать книгу онлайн

Хаос и структура - читать бесплатно онлайн , автор Лосев Алексей Федорович

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число. "Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

3. Однако в пределах иррациональных структур уже намечается разная степень конкретности границы и оформления. В чисто иррациональном числе граница только становится, и больше ничего о ней тут не известно. Но в понятии непрерывности эта становящаяся граница внутреннего сливается с самим числом и, таким образом, полагается вместе с ним, полагается в меру его собственной положенности. Раньше граница вовсе не была положена, а бралась готовой, как положенная неизвестно каким смысловым актом. В непрерывной величине она слита с числом настолько интимно, что ее становление оказывается уже становлением самого числа, а положенность числа оказывается уже и положенностью ее самой. В непрерывности стихия границы, т. е. сама очер–ченность, оформленность, вошла во внутреннее содержание числа и объединилась с ним, и получилась некая оформленность, или образность, но — пока на [186]стадии текучего и алогического, сплоченно–неразличенного становления. Если бы граница, очерченность, образность были положены как такие, мы имели бы категориальную структуру границы, и диалектика числа как конкретного смыслового образа была бы в основном закончена. Но тут граница и очерченность положены вместе с самим числом, и потому предстоит еще диалектика разделения этих двух моментов, прежде чем будет получена чистая и конкретная смысловая фигурность числа.

В непрерывной величине фигурность числа положена вместе с самим числом и алогически расплылась в нем. Прерывная величина вносит различения в эту алогическую растворенность фигуры числа в самом числе. В категории же предела впервые останавливается это бесконечное алогическое стремление и фиксируется как некая ставшая структура. Оформленность и образность, вошедшие в непрерывной и прерывной величине внутрь структуры и придавшие ей определенную смысловую содержательность (пока на стадии алогического становления), в понятии предела впервые фиксируются в своей едино–совокупной положенности, в своей ставшей, а не просто становящейся смысловой данности. Оттого предел есть ставшая фигурность внутреннего и внешне положенного числа, пребывающего во взаимно несоизмеримом подвижном алогизме. Предел есть положенность такой границы, такой структуры и числового очертания, когда этими границами и структурами определяется алогический процесс становления числа, по существу своему бесконечный. Непрерывность и прерывность слиты здесь в один процесс стремления выразить некую общую структуру становления, и эта структура и есть граница, предел — и в общем, и в специально–математическом смысле этого последнего слова.

4. Итак, мы получили до сих пор оформление числа, положенное в неразрывном единстве с самим числом, с его внутренно–внешним содержанием. Разная степень конструкции этого оформления зависит от разной степени конкретности самого числа. Ниже (§ []) мы увидим на трех типичных пределах — <…> как эта нарастающая конкретность числа, взятого вместе с его фигурностью, чувствуется вполне осязательно. Если предел <…> есть стихия числа (единицы) в его общеэнергийной выявлен–ности, где сама явленность, т. е. сама очерченность и фигурность, еще пока растворена во внутрённо–внешнем содержании числа и где нет раздельного фиксирования формы как таковой и числа как такового, то в пределе (…) начинается, рождается, а в пределе (…) завершается и наглядно рисуется такая оформленность числа, которая хотя и пребывает в полной с ним неразрывности, но уже осязательно на нем обрисовывается, выпукло на нем выступает и оказывается в значительной мере доступной для изолированного созерцания. В понятии (…) дано наиболее наглядно это совокупное содержание границы величины и ее внутреннего содержания — в конкретно выявленном взаимоотношении того и другого. Здесь наиболее зрелый плод совокупного полагания вещи вместе с ее смысловой образностью и очерченностью.

5. Следовательно, остается только отбросить то, ради чего данная образность есть образность, и мы получим уже чистую самостоятельную числовую образность, созерцаемую не на чем–нибудь другом и не в отношении чего–нибудь другого, а вполне самостоятельно, образность как таковую, как новую и самодовлеющую субстанцию. В категориях непрерывности, прерывности и предела числовая образность была хотя и положена, но эта положенность была связана здесь с формой и степенью положенности самого числа и потому получала не общую, а частную, вполне специфическую структуру. Это мешало числовой образности быть свободной структурой, и ее нельзя было вписать в таблицу основных математических категорий как самодовлеющую. Она тут пока еще играет второстепенную роль, и значение ее вполне прикладное. Но исключим из этого едино–совокупного обстояния образа–вещи числа его «вещественную» стихию и сосредоточимся на образности как таковой, на образности как самоцели, и — мы получаем уже совершенно новую категорию числа, вполне свободную и самоцельную; и тут уже не будет антитезы внутреннего и внешнего как основного и единственного фактора (при котором граница была бы чем–то второстепенным, хотя и само собою разумеющимся), но тут будет обратная тому ситуация: основную и единственную роль играет здесь сама граница, сама образность и оформление, а антитеза внутреннего и внешнего оттесняется здесь назад и начинает играть роль только смыслового фона, совершенно необходимого и очень нужного, но второстепенного и как бы окаймляющего выпукло данную и резко выступившую вперед очерченность и фигурную сконст–руированность.

Число, данное как чисто смысловая образность и фигурность числа, как отделенная от его внутренно–внешне–го содержания чистая его структурность, и есть мнимое, или комплексное, число.

К анализу этой глубочайшей категории математики мы теперь и обратимся.

§ 105. [с)] Мнимая (комплексная) величина. Общее понятие.

Мнимая величина может быть рассматриваема с разнообразных точек зрения, и в самой математике дается отнюдь не какое–нибудь одно–единственное ее определение, хотя, безусловно, все эти различия являются только разными сторонами одной и той же диалектической конструкции, и надо уметь их так связать, чтобы действительно получалась единая конструкция.

1. Одно из самых первых и элементарных определений мнимой величины — это то, что обыкновенно обозначается как i и представляет собою квадратный корень из отрицательной единицы, √−1. Это вполне слепое определение мнимой величины, получаемое как необходимое завершение понятия числа, совершенно не раскрыто в математике по существу; и, кажется, можно с полным правом сказать, что никто ровно ничего не понимает в этом выражении √−1. В руководствах по математике эта мнимая величина трактуется просто как необходимое следствие из желания проводить любые действия над любыми величинами. Если бы мы не извлекали квадратного корня из отрицательных величин, то в силу этого отпали бы весьма значительные операции, появляющиеся тем не менее вполне естественно, в порядке самых обыкновенных вычислительных приемов. Операция извлечения корня из отрицательной величины появляется вполне естественно, и поэтому волей–неволей приходится считаться с нею. Но что она значит, что это, собственно, значит—извлечь квадратный корень из отрицательного числа — этого, можно сказать, ровно никто не знает. И потому это пресловутое i вводят нехотя, как бы стыдясь столь неприличной вещи, и если вводят, то сейчас же стремятся избавиться от этого i и перейти к «вещественным» числам и операциям.

Это наивное и смешное отношение к числу / было результатом определенной эпохи вульгарного материализма, видевшей конкретное только в вещественном и не подозревавшей того, что подлинная конкретность не в грубом веществе, но в диалектике бытия в жизни, в рождении и пребывании живых противоречий действительности. Поэтому нашей задачей является не стыдливо и боязливо прикрыть этот досадный символ i и сделать вид, что тут нет ничего особенного и что даже самое это / как бы не существует, а, наоборот, дать себе отчет в полной ясности мысли о природе мнимой величины и без всяких ограничений и стеснений вскрыть решительно все те категории мысли, которые вошли в это i и определили собой его общелогическую и, в частности, диалектическую структуру.

Перейти на страницу:
Комментариев (0)
название