-->

Человеческое познание его сферы и границы

На нашем литературном портале можно бесплатно читать книгу Человеческое познание его сферы и границы, Рассел Бертран Артур Уильям-- . Жанр: Философия. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Человеческое познание его сферы и границы
Название: Человеческое познание его сферы и границы
Дата добавления: 15 январь 2020
Количество просмотров: 190
Читать онлайн

Человеческое познание его сферы и границы читать книгу онлайн

Человеческое познание его сферы и границы - читать бесплатно онлайн , автор Рассел Бертран Артур Уильям

"Человеческое познание, его сфера и границы" — лучшее произведение лорда Бертрана Артура Уильяма Рассела (1872–1970), оставившего яркий след в английской и мировой философии, логике, социологии, политической жизни. Он является основоположником английского неореализма, "логического атомизма" как разновидности неопозитивизма.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Мы можем обобщить: если дан любой объект о и дано, что а есть член класса В, то мы говорим, что в отношении к этому данному вероятность, что о есть член класса А, равна А/В в ранее определенном смысле. Эта концепция полезна, потому что часто о каком-либо объекте мы знаем достаточно много, чтобы определить его однозначно, не имея при этом достаточных знаний, чтобы определить, имеет ли он то или это свойство. «Самый высокий человек в Соединенных Штатах» есть определенное описание, применимое к одному и только одному человеку, но я не знаю, к какому человеку, к поэтому для меня является открытым вопрос, живет ли он в штате Айова. «Карта, которую я собираюсь вытащить», есть определенное описание, и через момент я буду знать, будет ли это описание относиться к красной или к черной карте, но к какой, я еще пока не знаю. Именно это очень обычное состояние частичного незнания в отношении определенных объектов делает полезным применение вероятности и к определенным объектам, а не только к полностью неопределенным членам классов.

Хотя частичное незнание есть то, что делает вышеприведенную форму вероятности полезной, незнание все-таки не включено в понятие вероятности, которое по-прежнему имело бы тот же смысл для всеведущего существа, как и для нас. Всеведущее существо знало бы, относится ли a к классу A, но все-таки могло бы сказать: по отношению к данному, что а есть B, вероятность того, что а есть A равна A/B.

При применении нашего определения к конкретным примерам в некоторых случаях возможна неясность. Чтобы сделать это понятным, мы лучше воспользуемся языком свойств, чем классов. Пусть класс А определяется свойством f, а класс B свойством y. Тогда мы скажем:

Вероятность того, что о имеет свойство f при том, что оно имеет свойство y, определяется как отношение вещей, имеющих как свойство f, так и свойство y, к вещам имеющим свойство y. Мы обозначаем выражение «a имеет свойство f» знаком «fa». Но если о встречается в «fa» больше одного раза, то возникнет неясность. Например, допустим, что 'fa» обозначает «о совершает самоубийство», то есть «a убивает a». Это есть значение выражения «x убивает x», которое является классом самоубийств; оно также есть значение выражения «о убивает х», которое является классом людей, которых убивает а;, оно также есть значение выражения «x убивает a», которое есть класс людей, которые убивают о. Таким образом, определяя вероятность fa, если «a» встречается в «fa» больше одного раза, мы должны указать, какие из его наступлений должны и какие не должны рассматриваться как значения переменной.

Окажется, что мы может интерпретировать все элементарные теоремы в согласии с вышеприведенным определением. Возьмем, например, предполагаемое Лапласом оправдание индукции. Имеется N+1 сумок, каждая из которых содержит N шаров. Из этих сумок r+1-я содержит г белых шаров и N — r черных шаров. Мы вытащили из одной сумки n шаров, причем все они оказались белыми.

Каков шанс

(a) что мы выбрали сумку с одними лишь белыми шарами?

(b) что следующий шар окажется тоже белым?

Лаплас говорит, что (a) есть (n+1)/(/V+1) и (b) есть (n +1)/(n+2). Иллюстрируем это несколькими числовыми примерами. Во-первых, допустим, что всего имеется 8 шаров, из которых вытащено 4, все белые. Каковы шансы (a), что мы выбрали сумку, содержащую только белые шары, и (b) что следующий вытащенный шар тоже окажется белым?

Пусть Pr представляет собой гипотезу, что мы выбрали сумку с r белыми шарами. Эти данные исключают р0, р1, р2, р3. Если мы имеем p4, то имеется только один случай, когда мы могли вытащить 4 белых, и остается 4 случая вытащить черный и ни одного — белый. Если мы имеем р5, то есть 5 случаев, когда мы могли бы вытащить 4 белых, и для каждого из них был 1 случай вытащить следующий белый и 3 — вытащить черный; таким образом, из р5 мы получаем 5 случаев, где следующий шар будет белым, и 15 случаев, где он будет черным. Если мы имеем P6, то есть 15 случаев выбора 4 белых, а когда они вытащены, остается 2 случая выбрать один белый и 2 случая выбрать черный; таким образом, из P6 мы имеем 30 случаев получения следующего белого и 30 случаев, когда следующий будет черным. Если мы имеем p7, то есть 35 случаев вытащить 4 белых, а после того, как они будут вытащены, останется 3 случая вытащить белый и один — вытащить черный; таким образом, мы получаем 105 случаев вытащить следующий белый и 35 — вытащить черный. Если мы имеем P8, то есть 70 случаев вытащить 4 белых, а когда они будут вытащены, то есть 4 случая вытащить следующий белый и ни одного — вытащить черный; таким образом, из P8 мы получаем 280 случаев вынуть пятый белый и ни одного — вынуть черный. Суммируя, мы имеем 5+30+105+280, то есть 420 случаев, когда пятый шар является белым, и 4+15+30+35, то есть 84 случая, когда пятый шар является черным. Следовательно, разница в пользу белого составляет отношение 420 к 84, то есть 5 к 1; это значит, что шанс, что пятый шар окажется белым, равен 5/6.

Шанс, что мы выбрали сумку, в которой все шары белые, есть отношение числа случаев получения 4 белых шаров из этой сумки ко всему числу случаев получения 4 белых шаров. Первых, как мы видели, 70; вторых 1+5+15+35+70, то есть 126. Следовательно, шанс равен 70/126, то есть 5/9.

Оба эти результата согласуются с формулой Лапласа. Возьмем еще один числовой пример: допустим, что имеется 10 шаров, из которых 5 было вынуто, причем они оказались белыми. Каков шанс р10, то есть того, что мы выбрали сумку с одними белыми шарами? И каков шанс, что следующий шар будет белым?

P5 возможно в 1 случае; если р5, то ни одного случая следующего белого, 5 случаев следующего черного;

P6 возможно в 6 случаях; если р6, то 1 случай следующего белого, 4 случая черного;

P7 возможно в 21 случае; если р7, то 2 случая следующего белого, 3 случая черного;

P8 возможно в 56 случаях; если P8, то 3 случая следующего белого, 2 случая черного;

P9 возможно в 126 случаях; если P9, то 4 случая следующего белого, 1 случай черного;

P10 возможно в 252 случаях; если P10, то 5 случаев следующего белого, 0 случаев черного.

Таким образом, шанс р10 равен 252/(1+6+21+56+126+252), то есть 252/462, то есть 6/11.

Случаи, когда следующий шар может быть белым, составляют 6+21 * 2+56 * 3+126 * 4+252 * 5, то есть 1980, а случаи, когда он может быть черным, составляют 5+4 * 6+3 * 21+2 * 56+126, то есть 330.

Следовательно, разница в пользу белого составляет отношение 1980 к 330, то есть 6 к 1, так что шанс получения следующего белого равен 6/7. Это тоже находится в согласии с формулой Лапласа.

Возьмем теперь закон больших чисел Бернулли. Мы можем иллюстрировать его следующим образом. Допустим, что мы бросаем монету n раз и пишем 1 всякий раз, кода выпадает ее лицевая сторона, и 2 — всякий раз, когда она выпадает оборотной стороной, образуя, таким образом число из n-го количества однозначных чисел. Предположим, что каждая возможная последовательность выпадает только один раз. Таким образом, если n = 2, то мы получим четыре числа: 11, 12, 21, 22; если n =3, то мы получим 8 чисел: 111, 112, 121, 122, 211, 212, 221, 222; если n=4, мы получим 16 чисел: 1111, 1112, 1121, 1122, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2221, 2222 и так далее

Беря последнее из вышеприведенного перечня, мы находим: 1 число со всеми единицами, 4 числа с тремя единицами и одной двойкой, 6 чисел с двумя единицами и двумя двойками, 4 числа с одной единицей и тремя двойками, t число со всеми двойками.

Эти числа — 1, 4, 6, 4, 1 — являются коэффициентами в разложении бинома (а + b)4. Легко доказать, что для n однозначных чисел соответствующие числа являются коэффициентами в разложении бинома (о + b)n. Теорема Бернулли сводится к тому, что если n является большим, то сумма коэффициентов около середины будет почти равна сумме всех коэффициентов (которая равна 2n), Таким образом, если мы возьмем все возможные последовательности выпадения лицевой и оборотной сторон в большом числе бросаний, то огромное большинство их будет иметь почти одинаковое число у обеих (то есть у лицевой и оборотной сторон); это большинство и приближение к полному равенству будет, кроме того, неопределенно увеличиваться по мере того, как будет увеличиваться число бросаний.

Перейти на страницу:
Комментариев (0)
название