-->

Школа должна учить мыслить!

На нашем литературном портале можно бесплатно читать книгу Школа должна учить мыслить!, Ильенков Эвальд Васильевич-- . Жанр: Философия / Психология. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Школа должна учить мыслить!
Название: Школа должна учить мыслить!
Дата добавления: 15 январь 2020
Количество просмотров: 271
Читать онлайн

Школа должна учить мыслить! читать книгу онлайн

Школа должна учить мыслить! - читать бесплатно онлайн , автор Ильенков Эвальд Васильевич

Как научить ребенка мыслить? Какова роль школы и учителя в этом процессе? Как формируются интеллектуальные, эстетические и иные способности человека? На эти и иные вопросы, которые и сегодня со всей остротой встают перед российской школой и учителями, отвечает выдающийся философ Эвальд Васильевич Ильенков (1924—1979).

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 4 5 6 7 8 9 10 11 12 13 ВПЕРЕД
Перейти на страницу:

И сравнительно малый процент «способных» к математическому мышлению мы получаем до сих пор от школы вовсе не потому, что матушка-природа столь скупа на раздачу математических способностей, а совсем по другой причине.

Прежде всего потому, что в сферу математического мышления мы зачастую вводим маленького человека «кверху ногами», задом наперед. Потому, что с первых же дней вбиваем ему в голову такие «представления» о математических понятиях, которые не помогают, а, как раз наоборот, мешают ему увидеть, правильно рассмотреть окружающий его мир под непривычным для него – строго математическим – углом зрения.

«Способными» же в итоге оказываются те дети, которые по какому-то счастливо-случайному стечению обстоятельств умудряются все-таки выглянуть в «окно», забитое досками неверных представлений. Где-то между этими досками сохраняются «щели», в которые пытливый ребенок иной раз и заглядывает. И оказывается «способным»... [40]

А эти неверные представления об исходных математических понятиях органически связаны с теми антикварными философско-гносеологическими представлениями о понятиях вообще и об отношениях этих понятий с реальностью вне мышления, с которыми научная философия давно разделалась и распрощалась.

Философско-логический анализ первых страниц учебника, который вводит первоклассника в царство математических понятий – учебник арифметики – демонстрирует этот факт бесспорно. Он внушает ребенку абсолютно ложное (с точки зрения самой математики) представление о числе.

Как задается ребенку «понятие» числа, этого фундаментального и самого общего основания всех его дальнейших шагов в области математического мышления?

На первой странице очень натурально и наглядно нарисован мячик, рядом с ним – девочка, яблоко (или вишенка), жирная палочка (или точка) и, наконец, цифровой знак «единицы».

На второй странице – две куклы, два мальчика, два арбуза, две точки и цифра «2» («два»). И так далее – вплоть до десяти, до этого «предела», назначенного дидактикой для первоклассника сообразно с его возрастными («природными») возможностями...

Предполагается, что «усвоив» эти десять страниц, ребенок «усвоит» счёт, а вместе с ним – «понятие числа».

Умение считать он, действительно, таким образом усваивает. Но вот что касается «понятия числа», то вместо него ребенок незаметно для себя проглатывает совершенно ложное представление о числе – такое представление об этом важнейшем понятии, которое даже хуже тех обывательских, донаучных представлений, с которыми он приходит в школу. И это ложное представление чуть позже будет ему очень сильно мешать при усвоении более сложных шагов на поприще математического мышления.

В самом деле, если бы первоклассник обладал нужными для этого аналитическими способностями, то на вопрос: «что такое число?» – он ответил бы после усвоения указанных страниц примерно следующее.

Число – это название, выражающее то абстрактно-общее, что имеют между собой все единичные вещи. Исходная цифра натурального ряда – это название [41] единичной вещи, «двойка» – название «двух» единичных вещей и т.д. Единичная же вещь – это то, что я вижу в пространстве как резко и отчетливо отграниченное, «вырезанное» контуром из всего остального, окружающего ее мира, будь то контур мячика или шагающего экскаватора, девочки или тарелки с супом. Недаром, чтобы проверить, усвоил ребенок эту премудрость или нет, ему показывают предмет (безразлично какой) и спрашивают – «сколько?», желая услышать в ответ – «один (одна, одно)». А далее – два, три и т.д.

Но ведь само собой понятно, что любой мало-мальски грамотный в математике человек рассмеется, услышав такое объяснение «числа», по праву расценит его как детски-наивное и неверное.

В самом деле, это лишь частный случай числового выражения действительности. А ребенок вынужден усваивать его как самый общий, как представление о «числе вообще».

В итоге же получается, что уже ближайшие шаги в сфере математического мышления, которые он неуверенно делает под присмотром учителя, заводят его в тупик и сбивают с толку. Скоро оказывается, что единичный предмет, который ему показывают, вовсе не обязательно называется словечком «один», что это может быть и «два» (две половинки), и три, и восемь, и вообще сколько угодно. Оказывается, что число «1» есть все что угодно, но только не название единичной, чувственно-воспринимаемой «вещи». А чего же? Какую реальность обозначают числовые знаки?

Теперь этого вам уже не скажет и ребенок, обладающий самыми тонкими и гениальными аналитическими способностями... И не скажет потому, что в его голове отложились два взаимоисключающих представления о числе, которые он никак не соотносит, не «опосредует». Они просто находятся «рядом», как два стереотипа, в его «второй сигнальной системе».

Это очень легко выявить, столкнув их в «сшибке», в открытом противоречии.

Покажите ему игрушечный поезд, сцепленный из трех вагонов и паровозика. Сколько?

Один (поезд)? Четыре (составных части поезда)? Три и один (паровоз и вагоны)? Шестнадцать (колес)? Шестьсот пятьдесят четыре (грамма)? Три пятьдесят (цена игрушки в магазине)? Одна вторая (комплекта)? [42]

Здесь обнаруживается все коварство абстрактного вопроса «сколько?» на который его ранее приучили давать бездумно абстрактный ответ, не уточняя – «чего?»... И даже отучая от такого желания уточнить, если оно у него было, как от желания, которое надо оставить перед входом в храм математического мышления, где в отличие от мира его непосредственного опыта и вкусная конфета, и отвратительная ложка касторки значат «одно и то же» – а именно «одно», единицу»...

Такая абстракция, на которую ребенка «натаскивают» первые страницы обучения «счету», приучающие начисто отвлекаться от всякой качественной определенности «единичных вещей», приучающие к мысли, что на уроках математики «качество» вообще нужно забыть во имя чистого количества, во имя числа, для понимания ребенка непосильна. Он ее может только принять на веру – так, мол, уж принято в математике, в противоположность реальной жизни, где конфету от касторки он все же продолжает различать...

Предположим, что ребенок твердо «усвоил» вышеразъясненное представление о «числе» и «счете», и что три арбуза – «одно и то же», что и три пары ботинок, – «три» без дальнейших разъяснений.

Но тут ему сообщают новую тайну – три аршина нельзя складывать с тремя пудами, это – «не одно и то же», и что, прежде чем «складывать» – располагать в один счетный ряд – надо предварительно убедиться, что имеешь дело с одноименными (однокачественными) вещами, что бездумно складывать и вычитать можно только «неименованные числа», а именованные – нельзя... Еще один стереотип, причем – прямо противоположный. Какой же из них следует «применить», «включить» в данном случае?

Почему в одном случае надо и можно «складывать» два мальчика с двумя вишенками, а в другом – не надо и нельзя? Почему в одном случае это – «одно и то же», а именно – единичные чувственно-воспринимаемые вещи без дальнейших разъяснений, а в другом – «не одно и то же», – разноименные, разнородные (хотя и тоже единичные) вещи?

В самом деле – почему?

Учитель этого не объясняет. Он просто показывает – на «наглядных примерах» что в одном случае надо [43] действовать так, а в другом – эдак. Тем самым ребенку внушаются два готовых абстрактнейших представления о «числе» и не дается его конкретного понятия, то есть понимания...

Это очень напоминает дидактические принципы обучения «уму», высмеянные мудрой народной сказкой.

– Дурень, а дурень, чем на печке лежать – пошел бы, потерся около людей – ума набрался!

Послушный и прилежный дурень увидел мужиков, что таскали мешки с пшеницей, и ну – тереться то об одного, то об другого...

– Дурень ты, дурень, тут надо было сказать – таскать вам, не перетаскать!

1 ... 4 5 6 7 8 9 10 11 12 13 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название