Приспособиться и выжить!
Приспособиться и выжить! читать книгу онлайн
В своей книге американский биолог, крупнейший специалист по эволюционной биологии развития (эво-дево) Шон Кэрролл понятно и увлекательно рассказывает о том, как эволюция и работа естественного отбора отражаются в летописи ДНК. По его собственным словам, он приводит такие доказательства дарвиновской теории, о которых сам Дарвин не мог и мечтать. Генетические исследования последних лет показывают, как у абсолютно разных видов развиваются одни и те же признаки, а у родственных — разные; каким образом эволюция повторяет сама себя; как белокровные рыбы научились обходиться без гемоглобина, а колобусы — переваривать растительную пищу как жвачные животные. Кэрролл решительно выступает против тех, кто использует ненаучные аргументы в борьбе с дарвинизмом, и предупреждает о том, что, если мы будем игнорировать прогнозы ученых и продолжим относиться к природе потребительски, планету ждет невеселое будущее.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рис. 8.1. Образование кораллового рифа. Дарвин предположил, что три основные формы рифов являются последовательными стадиями одного и того же процесса. Сначала вокруг острова возникает окаймляющий риф; по мере оседания суши он превращается в барьерный риф, окружающий остров вместе с лагуной. В конечном итоге поверхность суши погружается под воду, и риф превращается в окружающий лагуну атолл. Рисунок Лианн Олдс.
В соответствии с идеей Дарвина сначала вдоль берегов нового острова возникает окаймляющий риф. Затем, по мере того как остров оседает, риф продолжает расти, превращаясь в барьерный риф и образуя лагуну вокруг острова. И наконец, когда остров скрывается под поверхностью океана, возникает атолл.
Рост большинства кораллов и погружение островов нельзя увидеть глазами: крупные кораллы растут не более чем на 5 мм в год. Однако Дарвин сумел оценить кумулятивный эффект постепенных изменений, происходящих за длительный период времени, что позволило ему выстроить свою теорию. А через 20 лет после возникновения этой теории он по-новому объяснил происхождение невероятного разнообразия обитающих здесь видов.
Геологическая и биологическая теории Дарвина основаны на широкой экстраполяции — от едва заметных постепенных изменений до крупных превращений, от настоящего в прошлое и от простых форм к более сложным. В значительной степени несогласие с теорией Дарвина связанно именно с сомнениями в обоснованности подобных экстраполяций (в частности, с неприятием идеи «сложения» эффектов на протяжении длительного отрезка времени). Я в своей книге тоже нередко прибегаю к экстраполяциям. Например, я рассказывал о том, что незначительные изменения зрительных пигментов позволяют организмам адаптироваться к изменению освещенности в их среде обитания. Я надеюсь, что после прочтения предыдущих пяти глав у вас не осталось сомнений относительно реальности естественного отбора. В этом и состоит главная задача этой книги — устранить все сомнения. Но вы, возможно, все еще захотите мне возразить: допустим, все это верно в отношении небольших изменений уже существующих сложных структур, но как и из чего этот самый глаз впервые возник?
Это нужный и важный вопрос.
Эволюция сложных структур долгое время была в центре внимания биологов и оставалась прибежищем противников эволюции. Довольно часто случается, что люди признают вариабельность и эволюцию внутри существующих видов (то есть «микроэволюцию»), но отказываются экстраполировать этот процесс на происхождение новых видов и эволюцию сложных признаков, выходящих за пределы вариаций внутри вида («макроэволюция»). В некоторых штатах США дело доходит до того, что в учебниках по биологии заклеивают соответствующие страницы (см. главу 9).
Чтобы объяснить, каким образом естественный отбор создает органы «чрезвычайного совершенства и сложности», Дарвину пришлось оперировать очень большими временными интервалами. Объяснение Дарвина было блестящим, но оно основывалось на экстраполяции от простого к сложному, а не на эмпирических знаниях об истории формирования глаза. Подробности образования и эволюции таких сложных структур в то время не были известны и продолжали оставаться тайной на протяжении большей части следующего столетия.
Но сегодня ситуация изменилась.
За последние 20 лет были получены прямые доказательства того, как возникли и развивались сложные структуры, в частности в организме животных. Это новое понимание появилось в основном благодаря успехам биологии развития, науки, которая изучает процесс превращения единственной клетки (яйца) в сложный организм, состоящий из миллиардов или триллионов клеток. Развитие организма теснейшим образом связано с эволюцией формы, поскольку все вариации и изменения формы сопровождаются изменением развития. Исследования в области эволюционной биологии развития (сокращенно эво-дево, от англ. evolution of development) привели ко многим неожиданным и важным открытиям, касающимся эволюции сложных организмов и их частей, и эти открытия лишают противников эволюции последних аргументов [18].
В этой главе я расскажу о некоторых наиболее важных открытиях в области эволюционной биологии развития, относящихся к эволюции сложных структур у животных. Я объясню, каким образом понимание процесса развития позволяет установить происхождение сложных структур, а сравнение путей развития разных организмов помогает понять эволюцию сложных признаков. Я сконцентрируюсь на описании особой группы генов, ответственных за построение тела и органов, а также на той части заключенной в ДНК информации, о которой я пока еще не рассказывал, но которая играет ключевую роль в понимании эволюции формы.
Внешность обманчива: у всех животных один и тот же набор генов для построения тела и органов
Животные, которых я увидел на Большом барьерном рифе, были представителями многих ветвей эволюционного древа. Из 35 основных групп, или типов, животных здесь встречаются кишечнополостные (кораллы, морские анемоны), губки, моллюски (кальмары, осьминоги), членистоногие (крабы), иглокожие (морские звезды и ежи), а также позвоночные (акулы, костные рыбы, морские черепахи и киты). Многие из этих животных характеризуются какими-то уникальными особенностями (панцири черепах, щупальца осьминогов, раковины моллюсков, клешни крабов и т. д.), однако у всех есть органы, необходимые для одних и тех же целей, например, глаза.
Нет сомнений в том, что глаза приносят пользу своим владельцам. Однако многих биологов со времен Дарвина удивляло разнообразие устройства глаз в царстве животных. Человек и другие позвоночные обладают глазами камерного типа с единственным хрусталиком. Крабы и другие членистоногие имеют сложные (фасеточные) глаза, в которых зрительную информацию независимым образом собирает множество отдельных зрительных ячеек. Осьминоги и кальмары, хотя и не являются нашими родственниками, тоже имеют камерные глаза, а вот у их более близких родственников, двустворчатых моллюсков, глаза бывают трех типов: камерные глаза с единственным хрусталиком, зеркальные глаза с хрусталиком и отражателем, а также сложные глаза, составленные из 10–80 ячеек.
На протяжении 100 с лишним лет ученые считали, что большое разнообразие строения глаз является результатом независимых «изобретений», произошедших в разных группах. На основании клеточного строения глаз животных знаменитый биолог-эволюционист Эрнст Майр и его коллега Л. В. Сальвини-Плевен предположили, что глаза в ходе эволюции возникали независимым образом от 40 до 65 раз.
С одной стороны, это утверждение поддерживает теорию о воспроизведении эволюционных событий при возникновении одних и тех же потребностей (в данном случае речь идет о потребности видеть). Идея о повторении эволюции глаз была широко распространена. Однако новые открытия заставили ученых пересмотреть свой взгляд на эволюцию глаза. Основной вопрос заключается в следующем: возникли ли глаза «из ничего» или их эволюция строилась на готовых элементах, имевшихся у одного или нескольких общих предшественников. Именно от этого зависят наши представления о вероятности эволюции сложных структур. Конечно, кажется более «трудным делом» (менее частым или менее вероятным) создание какой-либо структуры на пустом месте, из ничего, по сравнению с ситуацией, когда части этой структуры уже существуют. Новые данные показывают, что совершенно разные глаза, имеющиеся у разных типов животных, имеют между собой гораздо больше общего, чем кажется на первый взгляд, и эта общность позволяет нам лучше понять процесс эволюции сложных структур.
История формирования нового взгляда на эволюцию глаза началась в 1994 г. Вальтер Геринг и его коллеги из Университета Базеля (Швейцария) занимались изучением гена, необходимого для развития сложного глаза у дрозофилы. Когда этот ген инактивировали с помощью мутаций, глаз не формировался. Еще раньше ученые, занимающиеся генетикой дрозофил, прозвали этот ген безглазым (eyeless) (многие гены получают свое название от той функции, которая нарушается в случае их мутации; на самом деле нормальная функция данного гена состоит в содействии формированию глаза). Когда ученые выделили ген eyeless, они, к своему большому удивлению, обнаружили, что он кодирует белок, который чрезвычайно сильно напоминает белки, кодируемые мышиным и человеческим генами. Мышиный белок назвали маленьким глазом (Small eye); он также необходим для формирования глаза. Человеческий белок получил имя аниридия (Aniridia), поскольку его дефект приводит к исчезновению радужной оболочки глаза. Сходство между белками человека, мыши и дрозофилы настолько велико, что становится ясно — это один и тот же белок у разных видов организмов (рис. 8.2).