Биотехнология: что это такое?
Биотехнология: что это такое? читать книгу онлайн
Рассказывается о новом научно-практическом мировоззрении, способствующем решению глобальных проблем наших дней: продовольственной, энергетической, охраны здоровья человека. Читатель познакомится как с традиционной биотехнологией (хлебопечение, производство кисломолочных продуктов, виноделие и др.), так и с новейшей, связанной с геннетической, клеточной, белковой инженерией.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Не зная, как выглядят эти всемогущие хозяева планеты, человек издревле использовал их возможности в собственных интересах. Хлеб, вино, пиво, все кисломолочные продукты испокон веков получали путем брожения. Барельефы с рисунками, изображающими процессы изготовления пива — помол зерна, замочка муки грубого помола, прорастание и осолаживание целых зерен, получение сусла и т. д. дошли до наших дней со времен пятой династии египетских фараонов, датируемой 2400 годом до н. э. По другим же источникам, в Вавилоне пиво варили еще раньше — 6 тысяч лет назад. Но только овладение микробиологическим синтезом — целенаправленным получением биологически активных веществ с помощью микроорганизмов, основанном на действии, присущем микробной клетке ферментных систем, — позволило создать микробиологическую промышленность, успешно служащую самым неотложным хозяйственным нуждам.
Корова, жующая елкиВзять хотя бы ту же продовольственную проблему. Она всегда во всех странах во все времена зависела от того, насколько полно обеспечено животноводство кормами, сбалансированы ли эти корма по белку, аминокислотам, насколько высоко их содержание в клейковине зерновых культур. А в конечном счете от того, насколько успешно современное интенсивное животноводство снабжается кормовыми белками, дрожжами, аминокислотами, всевозможного рода витаминными добавками, стимуляторами роста, поставляемыми сельскохозяйственному производству микробиологической промышленностью.
Причем главное достоинство микробиологического синтеза кормового белка, как читатель уже знает из предыдущего рассказа, — доступность и дешевизна исходного сырья: низкосортная (неделовая) древесина, опилки, различные отходы сельскохозяйственной продукции и ее переработки, парафины, метиловый или этиловый спирт и т. д.
И если отечественное животноводство за последние три-четыре года начало уверенно наращивать темпы, подвел я итог импровизированной лекции, то это увеличила темпы работы микробиологическая промышленность, а нарастить мощность, резко поднять выход готовой продукции ей помогла наука, создавшая новые штаммы (культуры) бактерий.
В общем, идиллического отдыха в тот вечер не получилось. Но, странное дело, ни тогда, ни после так и не пришло ко мне по этому поводу чувства досады и раздражения. Да и из-за чего, собственно, было досадовать? Разве кому-либо из нас удавалось хоть раз уйти целиком даже на время от того дела, которому служишь? Более того, именно то чаепитие стало своеобразным толчком для мыслей, рассматриваемых мною прежде как нечто второстепенное, проходящее.
Я вдруг удивительно четко представил себе, как они — старая и новая биотехнология — слились, спаялись, как незаметно (даже для тех, кто и сам причастен к этой бурно развивающейся отрасли народного хозяйства) произошла их трансформация в нечто общее, единое. Как естественно и органично в этот удивительный процесс взаимообогащения включились и другие, отнюдь не родственные отрасли и направления научно-технического прогресса.
Этими мыслями я и хочу поделиться с моими читателями, приведя, разумеется, те доказательства и примеры, которые, надеюсь, сделают их убедительными.
Итак, нисколько не сомневаюсь в том, что никогда не занимаясь проблемами биотехнологии по долгу службы, вы все же о некоторых из них слыхали.
В самом деле, о той же проблеме растительного белка пишут так часто и так много, что не знать о ней нельзя даже при желании. Дело в том, что ценность белка растительного происхождения, как читатель уже знает из предыдущих глав, во многом определяется его сбалансированностью по аминокислотам, их соотношением в нем.
Не так давно ученые Всесоюзного научно-исследовательского института генетики и селекции промышленных микроорганизмов создали штамм бактерии, продуцирующей треонин — незаменимую аминокислоту, не синтезируемую организмом животных. Ее не хватает в белке таких ведущих сельскохозяйственных культур, как пшеница, рис, овес, соя, подсолнечник. Эту нехватку (так же, как и недостаток других незаменимых аминокислот, например, лизина, в кормах и пищевых продуктах) компенсируют добавлением того же треонина, но полученного путем биосинтеза.
Двойная груша и червякДо недавнего времени на предприятиях микробиологической промышленности его «нарабатывали» с помощью так называемых коринебактерий, наследственный аппарат (напомню — геном) которых изучен, к сожалению, еще довольно слабо. Но раз так, то и технологический процесс получения треонина оказывается, по сути дела, неуправляемым. И коринебактерий производили эту важнейшую аминокислоту по раз и навсегда установленным для нее природой и неизвестным исследователям законам. Как здесь было увеличить «наработку» треонина?
Но недаром фортификаторы утверждают, будто все на свете крепости для того и существуют, чтобы их в конце концов брали штурмом. Или... обходили — переиначили по-своему это утверждение микробиологи, ибо задумали плохо изученную коринебактерию заменить стародавней знакомой — кишечной палочкой. Ее-то геном им прекрасно известен, а значит, все последствия внесенных в него изменений вроде бы можно предвидеть. Но и здесь исследователей поджидали трудности. Как известно, бактерии не могут синтезировать аминокислоты из ничего, на пустом месте: им нужен определенный исходный материал, питательная среда. Четыре важнейших аминокислоты — лизин, метионин, треонин, изолейцин — они производят, например, из аспарагиновой кислоты, присутствующей в организме животных и растениях.
Но синтез аминокислот происходит в строгой очередности. Метионин будет продуцироваться бактериями только в том случае, если уже завершен процесс образования лизина. «Очередь» треонина — сразу после метионина: изолейцин завершит процесс синтеза, потому что его очередь после образования треонина. Такой порядок обусловлен самой природой, слагаемые процессы не подлежат перестановке.
Ну а если необходимо получить и наработать какую-то одну определенную аминокислоту в нужном количестве?
Тогда надо на последующем этапе заблокировать синтез. Именно такую задачу и поставили себе ученые, решившие «научить» бактериальную палочку сверхсинтезу, усиленной наработке треонина, блокировав его дальнейшее преобразование в изолейцин.
Но одно дело поставить задачу и совсем иное реализовать ее на практике. Чтобы добиться нужного результата, исследователям предстояло ни мало ни много, как переделать тот участок ДНК кишечной палочки, который ответствен за синтез треонина, так называемый оперон.
Потому что именно в нем зашифрован все той же природой код образования ферментов, ускоряющих синтез вышеназванных аминокислот.
Не вдаваясь в подробности большой и сложной работы, осуществленной селекционерами и генетиками, скажу лишь, что делалась она поэтапно. Сначала ученые вызвали направленную мутацию (стойкое изменение) генов, входящих в оперон. Результат не замедлил сказаться измененные клетки, перестав синтезировать изолейцин, начали нарабатывать треонин. Но, увы, в количествах, явно недостаточных. Пришлось в оперон ввести особый ген-стимулятор, активизировавший работу его собственных генов. И дело, как говорится, пошло... Количество треонина, получаемого за один цикл ферментации (биохимической переработки органического сырья с помощью микроорганизмов или ферментов), значительно увеличилось.
И все же о промышленном производстве треонина речь еще идти не могла. Для этого предстояло повысить работоспособность штамма как минимум в 10—45 раз! К счастью, ученые вспомнили о плазмидах — факторах наследственности, расположенных в клетках вне хромосом (в структурных элементах клеточного ядра, содержащих ДНК).
Дело в том, что, проникая в какую-либо клетку, плазмида тотчас начинает воспроизводиться. Известны случаи, когда она образовывала до трех тысяч копий. Вот и в данном случае плазмида, как говорится, не подвела, сделала свое дело. Но сначала микробиологи с помощью специально подобранного фермента (активного белка) «вырезали» из хромосомы штамма кишечной палочки фермент ДНК, содержащий треониновый оперон, и включили его с помощью методов генетической инженерии в плазмиду. А ее ввели в другую бактерию того же штамма. После размножения гибридной плазмиды синтез треонина усилился настолько, что продуктивность полученного штамма вдвое превысила работоспособность уже имеющихся.