-->

Чудесная жизнь клеток: как мы живем и почему мы умираем

На нашем литературном портале можно бесплатно читать книгу Чудесная жизнь клеток: как мы живем и почему мы умираем, Уолперт Льюис-- . Жанр: Биология / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Чудесная жизнь клеток: как мы живем и почему мы умираем
Название: Чудесная жизнь клеток: как мы живем и почему мы умираем
Дата добавления: 16 январь 2020
Количество просмотров: 303
Читать онлайн

Чудесная жизнь клеток: как мы живем и почему мы умираем читать книгу онлайн

Чудесная жизнь клеток: как мы живем и почему мы умираем - читать бесплатно онлайн , автор Уолперт Льюис

Что мы знаем о жизни клеток, из которых состоим? Скорее мало, чем много. Льюис Уолперт восполнил этот пробел, рассказав о клетках доступным языком, — и получилась не просто книга, а руководство для понимания жизни человеческого тела. Как клетки зарождаются, размножаются, растут и приходят в упадок? Как они обороняются от бактерий и вирусов и как умирают? Как злокачественные клетки образуют опухоли? Какую роль во всем этом играют белки и как структуру белков кодируют ДНК? Как воспроизводятся стволовые клетки? Как, наконец, из одной-единственной клетки развивается человек? И главный вопрос, на который пока нет однозначного ответа, но зато есть гипотезы: как появилась первая клетка — и значит, как возникла жизнь? Мир клеток, о котором рассказывается в этой книге, невероятен.

Льюис Уолперт (р. 1929) — известный британский биолог, популяризатор науки, телеведущий, почетный профессор Лондонского университета.

Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г. № 436-ФЗ, ст. 1, п. 2, пп. 3. Возрастных ограничений нет

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 8 9 10 11 12 13 14 15 16 ... 44 ВПЕРЕД
Перейти на страницу:

Двигательные белки отвечают также за движения ресничек. Многие наши клетки имеют так называемые реснички — что-то вроде одиночного волоска, находящегося на внешней оболочке. Эта ресничка изгибается и выпрямляется, заставляя окружающую жидкость обтекать клетку. Подобные реснички очищают, например, наши легкие: миллиарды ресничек в легких все время находятся в непрерывном движении, освобождая их от пыли и выводя ее наружу через рот. Сперматозоид, который после эякуляции устремляется навстречу яйцеклетке, также движется за счет похожего на ресничку отростка, но только значительно большего по своим размерам. Этот отросток изгибается и заставляет сперматозоид продвигаться вперед с завидной скоростью, превращая его в подобие оснащенного мощными ластами пловца.

Основным механизмом, приводящим в движение реснички, являются девять пар микротрубочек, собранных в кольцеобразную структуру, которая может изгибаться за счет скольжения микротрубочек относительно друг друга. Это скольжение осуществляется благодаря особым двигательным белкам. Недавно было признано, что гораздо больше клеток, нежели считалось ранее, имеют реснички и что при помощи этих ресничек клетки могут подавать друг другу различные сигналы.

Белки, расположенные на внешней оболочке клетки, также исполняют важнейшие функции. К внешней оболочке привязываются молекулы сахаров, создавая нечто вроде дополнительного защитного чехла, предохраняющего клетку от механических повреждений и неблагоприятного химического воздействия. На внешней поверхности клеточной оболочки имеются также белки, которые связываются с белками, расположенными на поверхностях других клеток, соединяя тем самым клетки воедино и позволяя им образовать клеточную ткань.

На внешней поверхности клеточных оболочек размещаются также белковые рецепторы, которые позволяют улавливать и передавать внутрь клетки сигналы, поступающие от других клеток. Поступающая таким образом информация передается прежде всего генам, находящимся в клеточном ядре, и оповещает их о том, что происходит в других клетках. Передача подобных сигналов протекает в виде сложных реакций и взаимодействия различных клеточных белков.

Клетки должны иметь возможность воспринимать сигналы соседних клеток, а также сигналы, которые поступают им издалека в виде гормонов. Например, гормон инсулин сигнализирует клеткам о том, что они должны позволить молекулам сахаров проникать в себя. В силу того, что белки внешней оболочки клетки играют определяющую роль в связях клетки с окружающим ее миром, число разновидностей таких белков достигает десяти тысяч, и они представляют собой значительную составляющую часть общей армии белков.

Основу клеточной оболочки составляют молекулы жиров, или липиды, и молекулы белков. Ключевая роль молекул жиров в строительстве клеточной оболочки основана на том, что они по природе своей отталкивают воду. Молекулы жиров не смешиваются с водой, а также держатся отдельно друг от друга. Они покрывают оболочку клетки тончайшим двойным слоем, благодаря чему она становится гибкой и подвижной и одновременно практически непроницаемой для молекул, растворимых в воде, — таких, как молекулы глюкозы. Размещенные в клеточной оболочке жировые молекулы похожи на крошечных животных, которые не выносят воду: головная часть этих молекул делает все, чтобы убраться из области, где есть вода, а хвостовая часть способна вынести лишь незначительный контакт с водой.

В образующем клеточную оболочку жировом слое размещены и молекулы белков, составляющие примерно половину всех молекул клеточной оболочки; они способны контролировать перенос и перемещение молекул сквозь клеточную оболочку. Благодаря этому клеточная оболочка обладает высокой степенью подвижности и гибкости, что позволяет ей принимать любую форму при изменении формы самой клетки, и не разрываться даже тогда, когда что-то протыкает ее извне. Новая клеточная оболочка формируется клеточным пузырьками — мельчайшими образованиями, которые, в свою очередь, также имеют оболочку. Легкость, с которой жировые молекулы образуют двойной защитный слой, сыграла важную роль в эволюции клеточной оболочки и самой клетки в целом.

Несмотря на то что жировые молекулы не терпят воды, вода все же способна проникать сквозь клеточную оболочку внутрь клетки, а также выводиться из нее. Но жировая оболочка пропускает внутрь в основном молекулы воды, не имеющие электрического заряда. Те же молекулы, что содержат электрический заряд — например, натрий и ионы калия, — проникают сквозь оболочку с большим трудом.

Ион — это атом или молекула, которая либо потеряла, либо приобрела один или два электрона, в результате чего получила отрицательный или положительный электрический заряд. Клеточную оболочку ионы преодолевают при помощи специального механизма транспортировки, состоящего из белков. Размещенные в клеточной оболочке белки также обеспечивают проникновение в клетку и вывод из нее крупных молекул. Клеточная оболочка содержит в себе две белковые системы по транспортировке молекул: одни белки обеспечивают чужим молекулам каналы проникновения сквозь оболочку, а другие выступают в роли их непосредственных переносчиков.

Концентрация ионов натрия вне клеток примерно в 20 раз выше их концентрации внутри клеток. Концентрация ионов калия вне клеток, наоборот, примерно в 20 раз ниже их концентрации внутри клеток. Подобная разница достигается за счет работы белкового «натриевого насоса» — белка, который выносит из клетки молекулы натрия и закачивает молекулы калия. Работа этого «насоса» чрезвычайно важна для того, чтобы не допустить разрыв клеточной оболочки под напором нагнетаемой в клетку воды. Если работа белкового «насоса» остановится, то давление разорвет оболочку клетки и клетка погибнет. Около одной трети всей энергии клетки — то есть около одной трети вашей энергии — уходит на обеспечение работы этого насоса.

Для того чтобы в клетку могла проникнуть глюкоза, являющаяся необходимым компонентом для обеспечения ее энергией, требуется особый белковый механизм; его роль осуществляет белок инсулин. В присутствии инсулина глюкоза переносится сквозь клеточную оболочку при помощи особых групп молекул, которые называются «транспортировщиками глюкозы». Они размещаются в мельчайших пузырьках внутри клетки. Когда инсулин связывается с оболочкой клетки, пузырьки перемещаются по системе микротрубочек, пока также не достигают оболочки и не связываются с ней. После этого транспортировщики глюкозы проникают в оболочку клетки и переносят сквозь нее молекулы глюкозы. Отказы в работе этого механизма приводят к развитию диабета.

В отсутствие инсулина глюкоза не способна преодолеть клеточную оболочку и проникнуть внутрь клетки. Инсулин вырабатывается бета-клетками поджелудочной железы, и, если эти клетки перестают вырабатывать инсулин, развивается диабет первого типа. Диабет первого типа является болезнью аутоиммунного происхождения, в ходе которой иммунная система ошибочно атакует и уничтожает бета-клетки. Проявляется диабет первого типа уже в раннем возрасте. Диабет второго типа, наоборот, поражает человека в возрасте более зрелом; причина его в том тем, что рецепторы клеточной оболочки перестают реагировать на инсулин и он не может ее преодолеть. Основным фактором риска при возникновении диабета второго типа является ожирение, поскольку увеличившиеся жировые клетки вырабатывают большее количество веществ, в том числе жирные молекулы особого вида, которые провоцируют устойчивость к инсулину. Напротив, «исхудавшие» жировые клетки вырабатывают вещества, способствующие поглощению инсулина. При диабетах обоих типов потребление глюкозы клетками значительно уменьшается, что, в свою очередь, уменьшает их способность вырабатывать энергию и ведет к сердечно-сосудистым заболеваниям, отказу почек, слепоте, нервным расстройствам, плохому заживлению ран и т. д. Плохое же заживление ран, особенно на ногах, грозит гангреной и ампутацией.

4. Как работают гены

Как ДНК кодируют структуру белков

1 ... 8 9 10 11 12 13 14 15 16 ... 44 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название