-->

Астероидно-кометная опасность: вчера, сегодня, завтра

На нашем литературном портале можно бесплатно читать книгу Астероидно-кометная опасность: вчера, сегодня, завтра, Иванов Борис Федорович-- . Жанр: Астрономия и Космос / Физика / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Астероидно-кометная опасность: вчера, сегодня, завтра
Название: Астероидно-кометная опасность: вчера, сегодня, завтра
Дата добавления: 15 январь 2020
Количество просмотров: 210
Читать онлайн

Астероидно-кометная опасность: вчера, сегодня, завтра читать книгу онлайн

Астероидно-кометная опасность: вчера, сегодня, завтра - читать бесплатно онлайн , автор Иванов Борис Федорович

Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.

Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Эти требования следует предъявлять не только к наземным средствам наблюдения, но и к аналогичным средствам космического базирования [Chesley, 2006] (что обеспечит их эффективность и будет оправдывать затраты на развертывание).

4. Работа средств обнаружения астероида должна являться составной и неотъемлемой частью комплекса, решающего проблему точного определения и прогнозирования текущих координат астероида, обеспечивающего надежную и заблаговременную оценку обстоятельств тесного сближения астероида с Землей.

В целом рассмотрение модельных ситуаций, проведенное в данном разделе, показывает, что в настоящее время задача оперативного противодействия прямому удару гектометрового астероида по Земле практического решения не имеет, а ее перспективы на ближайшие десятилетия весьма сомнительны. Кроме того, можно ожидать, что каждый случай космической угрозы будет в той или иной степени уникальным и потребует своего подхода.

10.8. Задачи увода реального угрожающего объекта

Недавнее обнаружение астероида Апофис показывает, что близкий пролет астероида, хотя и не задевающего Землю, оказывается весьма опасным ввиду возможных резонансных возвратов, рассмотренных в главе 7. Как было показано выше в этой главе, противодействовать ситуации резонансного возврата существенно легче, чем осуществлять перехват. Хотя резонансные возвраты уже рассматривались в главе 7, тем не менее полезно вернуться к этому вопросу и привести некоторые дополнительные сведения.

На рис. 10.11 приведена схема прогнозируемого близкого пролета астероида Апофис мимо Земли в 2029 г. и показано изменение вектора скорости астероида при гравитационном взаимодействии астероида с планетой.

Изменение скорости астероида по направлению и величине означает появление его новой гелиоцентрической орбиты в результате сближения с Землей. Вследствие неизбежных ошибок определения орбиты и ее последующего прогноза астероид может иметь различные значения прицельного расстояния. На рис. 10.11 возможные отклонения от номинального значения прицельного расстояния показаны жирной прямой, перпендикулярной относительной скорости астероида (так называемая линия вариации прицельного расстояния). Длина отрезка этой прямой составляет несколько тысяч километров. Виртуальные (возможные) астероиды, прошедшие через различные точки прямой, обогнут Землю на разных расстояниях. В зависимости от величины этого расстояния Земля по-разному изменит гелиоцентрическую орбиту астероида. Внутри возможного разброса входных траекторий находится зона резонансного возврата (ЗРВ) (то же самое, что и «замочная скважина» в главе 7), размеры которой (∼ 600 м) показаны на врезке слева. Если Апофис пройдет через нее 13 апреля 2029 г., то через 7 лет (в 2036 г.) астероид столкнется с Землей.

Точное место удара по Земле в 2036 г. зависит от того, через какую именно точку зоны резонансного возврата пройдет Апофис в 2029 г. Все возможные точки столкновения расположены в полосе, имеющей ширину ∼ 60 км. По сути дела, трасса возможного удара является как бы проекцией зоны резонансного возврата на Землю, и ее вид показан на рис. 10.12 (см. вклейку) [Schweickart, 2006].

Астероидно-кометная опасность: вчера, сегодня, завтра - i_239.png

Рис. 10.11. Изменение орбиты астероида Апофис при сближении с Землей

По имеющимся оценкам, энергетический эквивалент падения Апофиса составляет∼ 800 Мт ТНТ [Chesley, 2006]. Выделение такой энергии вызовет региональную катастрофу на суше или катастрофическое цунами в океане. Характер трассы возможного удара, показанный на карте мира, ясно демонстрирует межгосударственный масштаб бедствия. В случае, если пролет астероида в 2029 г. произойдет недалеко от ЗРВ, то в 2036 г. он испытает новое опасное сближение с Землей.

Таким образом, выявленная возможность столкновения с Апофисом в 2036 г. (и это — после, казалось бы, благополучного пролета астероида мимо Земли) ставит перед человечеством две серьезные задачи. Первая из них — это заблаговременное прогнозирование траектории Апофиса с такой точностью, которая гарантирует получение ясного ответа на вопрос: возможно ли (и насколько вероятно) прохождение Апофиса в 2029 г. через ЗРВ? Вторая задача возникает в случае высокой вероятности такого развития событий. Она сводится к проведению такой коррекции орбиты, которая исключит удар по Земле в 2036 г. Поскольку протяженность ЗРВ составляет менее километра, то в идеальном случае достаточно скорректировать траекторию Апофиса так, чтобы прицельное расстояние изменилось всего лишь на несколько километров, и это устранит опасность.

Однако ясно, что на практике как определение орбиты, так и выполнение коррекции неизбежно будут выполняться с некоторыми и, возможно, не такими малыми ошибками. Поэтому возникает необходимость определения максимально допустимых ошибок требуемой коррекции. Анализ обстоятельств различных возможных сближений Апофиса с Землей в 2029 г. показал, что ЗРВ, представленная на рис. 10.11, оказывается в околоземном пространстве не единственной, и на самом деле таких зон в окрестности Земли имеется довольно много [Chesley, 2006].

На рис. 10.13 показаны результаты расчетов расположения ЗРВ на прямой, вдоль которой откладываются значения прицельного расстояния (линия вариации прицельного расстояния (рис. 10.11)). Часть ЗРВ располагается за пределами области рассеивания прицельных расстояний, изображенной на рис. 10.11. Каждая зона отвечает возможным возвращениям Апофиса к Земле в том или ином году, а масштабом на этих линиях выбран радиус Земли Rз, равный Rз = 6378 км. Поэтому коррекция орбиты Апофиса, исключающая его возвращение в 2036 г., должна учитывать общую картину расположения зон резонансных возвратов во избежание попадания в ту или иную ЗРВ.

На рис. 10.13 видно постепенное сокращение размеров ЗРВ по мере поступления новых наблюдений Апофиса. Сплошной линией показан интервал, равный ±σ, а пунктир отмечает рассеивание в пределах ±3σ. Можно видеть, что на исходной стадии уточнения орбиты (февраль 2005 г.) ошибка прицельного расстояния могла достигать ∼ 3,6Rз. В этих пределах находились ЗРВ, соответствующие столкновениям с Землей от 2034 г. до 2048 г. По мере уточнения орбиты, закончившегося к августу 2005 г., область рассеивания сокращалась, и к концу интервала она охватывала лишь одну ЗРВ 2036 г. Среднеквадратичная ошибка величины прицельного расстояния составила σ ∼ 725 км. Следует отметить, что в настоящее время эта ошибка имеет величину ∼ 350 км (см. главу 7).

Астероидно-кометная опасность: вчера, сегодня, завтра - i_240.png

Рис. 10.13. Зоны резонансного возврата и динамика уточнения расположения зоны резонансного возврата в 2036 г. для случая астероида Апофис. Отрезки сплошной линии имеют длину, равную разбросу σ, пунктирной линии — 3σ

Расчетное расположение зон резонансного возврата, показанное на рис. 10.13, дает указания на величину максимально допустимых ошибок определения траектории при пролете Апофиса мимо Земли в 2029 г. и исполнения коррекции, обеспечивающей гарантированное отсутствие опасных сближений. При этом придется обеспечить среднеквадратичное значение ошибок определения траектории и коррекции не хуже, чем 300 км, исходя из условий гарантии отсутствия удара по Земле в 2036–2037 гг.

Указанные точности прогноза и коррекции следует считать минимально необходимыми. Однако они потребуют проведения большой коррекции орбиты, которую желательно всемерно уменьшать. Сокращение ошибок определения траектории позволит уменьшить и величину коррекции и облегчить ее практическое исполнение. Предыдущие разделы главы наглядно показывают цену этому уменьшению.

Поэтому следует принять все меры для того, чтобы повысить точность определения орбиты Апофиса и прогноза обстоятельств его пролета в 2029 г. Это позволит снизить необходимые пределы перемещения траектории вдоль линии вариации прицельного расстояния. В пределе желательно ограничиться изменением минимальной высоты пролета Апофиса над Землей всего лишь на несколько километров. Разумеется, это потребует и соответствующего повышения точности исполнения коррекции орбиты.

Перейти на страницу:
Комментариев (0)
название