-->

Теория струн и скрытые измерения вселенной

На нашем литературном портале можно бесплатно читать книгу Теория струн и скрытые измерения вселенной, Яу Шинтан-- . Жанр: Астрономия и Космос. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Теория струн и скрытые измерения вселенной
Название: Теория струн и скрытые измерения вселенной
Автор: Яу Шинтан
Дата добавления: 16 январь 2020
Количество просмотров: 424
Читать онлайн

Теория струн и скрытые измерения вселенной читать книгу онлайн

Теория струн и скрытые измерения вселенной - читать бесплатно онлайн , автор Яу Шинтан

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 79 80 81 82 83 84 85 86 87 ... 108 ВПЕРЕД
Перейти на страницу:

Теория струн и скрытые измерения вселенной - _78.jpg

Рис. 12.1. Это изображение — результат компьютерного моделирования. Оно показывает, как выглядела бы сеть космических струн, когда возраст Вселенной составлял около десяти тысяч лет (предоставлено Брюсом Алленом, Карлосом Мартинсом и Полом Шеллардом)

Усилия Тая, Полчински и других, ловко адресованные возражениям, которые Виттен выдвинул два десятилетия назад, возродили интерес к космическим струнам. Благодаря постулированной плотности, космические струны должны оказывать заметное гравитационное влияние на свое окружение и таким образом обнаруживать себя.

Например, если струна пробегает между нашей и другой галактикой, то свет от этой галактики будет огибать струну симметрично, создавая два одинаковых изображения, близко расположенных друг к другу на небе. «Обычно при гравитационном линзировании вы ожидаете увидеть три изображения», — объясняет Александр Виленкин, теоретик космических струн из Университета Тафта.[226] Некоторое количество света пройдет прямо через линзирующую галактику, а остальные лучи будут огибать ее с обеих сторон. Но свет не может пройти через струну, потому что диаметр струны намного меньше, чем длина волны света; таким образом, струны, в отличие от галактик, будут давать только два изображения, а не три.

Надежда замаячила в 2003 году, когда русско-итальянская группа во главе с Михаилом Сажиным из Московского государственного университета объявила, что они получили двойное изображение галактики в созвездии Ворона. Изображения находились на одинаковом расстоянии, имели одинаковое красное смещение и были спектрально идентичными с точностью до 99,96 %. Либо это были две чрезвычайно похожие галактики, случайно оказавшиеся рядом, либо первый случай наблюдения гравитационной линзы, созданной космической струной. В 2008 году более подробный анализ, основанный на данных космического телескопа Хаббла, который дает гораздо более четкую картину, чем наземный телескоп, использовавшийся Сажиным и его коллегами, показал, что представлявшаяся первоначально линзированной галактика на самом деле представляет собой две разные галактики; тем самым эффект космической струны был исключен.

Аналогичный подход, называемый микролинзированием, основан на допущении, что петля, образованная в результате разрыва космической струны, может создавать потенциально обнаружимые гравитационные линзы возле отдельных звезд. Хотя инструментально наблюдать раздвоенную звезду не представляется возможным, можно попытаться поискать звезду, которая будет периодически удваивать свою яркость, оставаясь неизменной по цвету и температуре, что может свидетельствовать о наличии петли космической струны, осциллирующей на переднем плане. В зависимости от местоположения, скорости движения, натяжения и конкретной колебательной моды, петля будет давать двойное изображение в одних случаях и не давать в других — яркость звезды может меняться на протяжении секунд, часов или месяцев. Такое свидетельство может быть обнаружено телескопом Gaia Satellite, запуск которого намечен на 2012 год и в задачу которого входит наблюдение за миллиардами звезд Галактики и ближайших окрестностей. Сейчас в Чили строят Большой обзорный телескоп (Large Synoptic Survey Telescope, LSST), который также может зафиксировать аналогичное явление. «Прямое астрономическое обнаружение суперструнных реликтов входит в задачу экспериментальной проверки некоторых базовых положений теории струн», — заявляет корнеллский астроном Дэвид Чернофф, член совместного проекта LSST.[227]

Между тем исследователи продолжают искать другие средства обнаружения космических струн. Например, теоретики полагают, что космические струны помимо петель могли образовать изломы и перегибы, излучая гравитационные волны по мере того, как эти нерегулярности упорядочиваются или разрушаются.

Гравитационные волны определенной частоты могут быть обнаружены с помощью космической антенны, использующей принцип лазерного интерферометра (Laser Interferometer Space Antenna, LISA) и проектируемой для орбитальной обсерватории, которая разрабатывается сейчас для НАСА.

Измерения будут проводиться при помощи трех космических аппаратов, расположенных в вершинах равностороннего треугольника. Две стороны этого треугольника длиной 5 миллионов километров будут образовывать плечи гигантского интерферометра Майкельсона. Когда гравитационная волна искажает структуру пространства-времени между двумя космическими аппаратами, появляется возможность измерить относительные изменения длины плеч интерферометра по сдвигу фазы лазерного луча, несмотря на малость этого эффекта. Виленкин и Тибо Дамур из французского Института высших научных исследований (IHES) предположили, что точные измерения этих волн могли бы выявить присутствие космических струн. «Гравитационные волны, излучаемые космическими струнами, обладают специфической формой, которая сильно отличается от волн, возникающих при столкновениях черных дыр или волн, испускаемых другими источниками, — объясняет Тай. — Сигнал должен начинаться с нуля и затем быстро увеличиваться и так же быстро уменьшаться. Под “формой волны” мы понимаем характер увеличения и уменьшения сигнала, причем описываемый характер присущ только космическим струнам».[228]

Другой подход основан на поиске искажений в КМФ, вызванных струнами. Исследование, проведенное в 2008 году Марком Хайндмаршем из Университета Сассекса, показало, что космические струны могут быть ответственными за комковатое распределение вещества, наблюдаемое с помощью Зонда Вилкинсона, предназначенного для исследования анизотропии микроволнового фона.

Это явление комковатости известно под названием не-гауссовость. Несмотря на то что данные, полученные командой Хайндмарша, предполагают наличие космических струн, многие ученые отнеслись к ним скептически, рассматривая наблюдающуюся корреляцию как простое совпадение. Этот вопрос необходимо прояснить, выполнив более точные измерения КМФ. Исследование потенциально не-гауссова распределения вещества во Вселенной является фактически одной из главных задач спутника «Планк», запущенного Европейским космическим агентством в 2009 году.

«Космические струны могут существовать, а могут и нет», — говорит Виленкин. Но поиск этих объектов идет полным ходом, и если они существуют, «их обнаружение представляется вполне реальным в ближайшие несколько десятилетий».[229]

В некоторых моделях струнной инфляции экспоненциальный рост объема пространства происходит в области многообразия Калаби-Яу, которая называется искривленной горловиной. В абстрактной области струнной космологии искривленные горловины считаются объектами с фундаментальными и родовыми характеристиками, «которые возникают естественным образом из шестимерного пространства Калаби-Яу», — говорит Игорь Клебанов из Принстона.[230] Несмотря на то что это не гарантирует наличия инфляции в таких областях, предполагается, что геометрический каркас искривленных горловин поможет нам понять инфляцию и разгадать другие тайны. Для теоретиков здесь открываются большие возможности.

Горловина, самый распространенный дефект в пространстве Калаби-Яу, представляет собой конусовидный шип, или конифолд, который выступает из поверхности. Физик из Корнеллского университета Лиам Макаллистер говорит, что остальную часть пространства, часто описываемую как bulk-пространство, можно рассматривать как большой шарик мороженого, сидящий на вершине тонкого и бесконечно заостренного конуса. Эта горловина становится более широкой, когда включаются поля, положенные теорией струн (техническое название — потоки). Астроном из Корнеллского университета Рэчел Вин утверждает, что, поскольку данное пространство Калаби-Яу, вероятно, имеет больше одной искривленной горловины, лучшей аналогией будет резиновая перчатка. «Наша трехмерная Вселенная как точка, перемещающаяся вниз по пальцу перчатки», — объясняет она.

Инфляция заканчивается, когда брана, или «точка», достигает кончика пальца, где находится антибрана или стопка из антибран. Рэчел Вин считает, что поскольку движение браны ограничено формой пальца или горловины, то «геометрия горловины будет определять специфичные характеристики инфляции».[231]

1 ... 79 80 81 82 83 84 85 86 87 ... 108 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название