Солнечная система (Астрономия и астрофизика)

На нашем литературном портале можно бесплатно читать книгу Солнечная система (Астрономия и астрофизика), Сурдин Владимир Георгиевич-- . Жанр: Астрономия и Космос / Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Солнечная система (Астрономия и астрофизика)
Название: Солнечная система (Астрономия и астрофизика)
Дата добавления: 15 январь 2020
Количество просмотров: 352
Читать онлайн

Солнечная система (Астрономия и астрофизика) читать книгу онлайн

Солнечная система (Астрономия и астрофизика) - читать бесплатно онлайн , автор Сурдин Владимир Георгиевич

Вторая книга серии «Астрономия и астрофизика» содержит обзор текущего состояния изучения планет и малых тел Солнечной системы. Обсуждаются основные результаты, полученные в наземной и космической планетной астрономии. Приведены современные данные о планетах, их спутниках, кометах, астероидах и метеоритах. Изложение материала в основном ориентировано на студентов младших курсов естественно-научных факультетов университетов и специалистов смежных областей науки. Особый интерес книга представляет для любителей астрономии.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 73 74 75 76 77 78 79 80 81 ... 88 ВПЕРЕД
Перейти на страницу:

Римские историки сообщили, что смерть Юлия Цезаря в 44 г. до н.э. совпала с появлением на небе яркой кометы. Поэтому в Средние века и даже позднее при королевских дворах Европы было распространено мнение, что комета предвещает смерть королю или его наследнику (весьма удобный способ «списать» дворцовую интригу на явление природы).

Вот пример эмоционального описания кометы 1528 г., оставленного известным французским хирургом Амбруазом Паре: «Эта комета была столь ужасна и страшна и порождала в народе столь великое смятение, что некоторые умирали от одного лишь страха, а другие заболевали. Она представляла собой светило громадной длины и кровавого цвета; в вершине ее была видна сжатая рука, держащая длинный меч, как бы готовый разить. У конца его клинка были видны три звезды. По обе стороны лучей, выходящих из хвоста этой кометы, виднелось множество топоров, ножей, мечей, обагренных кровью, а среди них были видны ужасные человеческие лица с всклокоченными бородами и дыбом стоящими волосами».

Первое, зафиксированное в истории появление кометы относится к 2296 г. до н.э. Тогда ее наблюдали китайские астрономы, старательно следившие за перемещением кометы по созвездиям. В представлении древних китайцев небо было огромной империей, управляемой Солнцем и состоящей из многочисленных областей и провинций, в которых яркие планеты были правителями. Для доставки императорских указов в отдаленные провинции нужны были курьеры. Их роль как раз и отводилась «хвостатым светилам», поскольку они быстро перемещались через многие созвездия и могли передавать императорскую волю. Подтверждением этого китайские астрономы считали перемещение «по воле императора» планет-правителей из одного созвездия в другое после прохождения кометы. Любопытно, что столь положительную роль кометам приписывали только в Китае.

Против обывательских взглядов, разумеется, устояли некоторые древнегреческие и римские мыслители, рассматривавшие кометы как природное явление, не связанное с судьбой человека. Аристотель (IV в. до н.э.) считал кометы атмосферным феноменом, принадлежащим изменчивому «подлунному миру», своеобразным родом земных испарений, нагревающихся или даже воспламеняющихся от близости к небесной «сфере огня». Правда, он не особенно настаивал на своей гипотезе; он писал: «Поскольку мы о кометах не имеем мнения, опирающегося на ощущения, то я должен быть доволен таким объяснением, которое не содержит противоречий с известными истинами».

Ближе всех к современной научной истине, пожалуй, подошел римский философ Сенека (I в. н.э.), который в заочном споре с Аристотелем писал: «Я не могу согласиться, что комета — это только зажженный огонь; это, скорее, одно из вечных творений природы… Комета имеет собственное место между небесными телами…, она описывает свой путь и не гаснет, а только удаляется. Не будем удивляться, что законы движения комет еще не разгаданы; придет время, когда упорный труд откроет нам скрытую сейчас правду…». Это время пришло лишь через полтора тысячелетия.

Рождение научной кометографии. Тихо Браге, наблюдавший яркую комету 1577 г., сопоставил свои данные с наблюдениями других европейских астрономов и пришел к выводу, что у кометы не было заметного параллакса, а значит она находилась далеко за пределом земной атмосферы и даже за пределом орбиты Луны, т.е. была самостоятельным небесным телом.

Теоретический труд Николая Коперника и практические открытия, сделанные с телескопом Галилея, окончательно подорвали доверие к геоцентрической системе мира Аристотеля и Птолемея, служившей основой научного мировоззрения почти два тысячелетия. Наверное этому факту более других удивился бы сам Аристотель. В отличие от своих многочисленных последователей он не был догматиком; он писал: «Я говорю о небесных телах, но я вижу их только издали; я не могу их наблюдать там, где они есть, и большая часть того, что происходит на небе, избегает наших глаз… Если кто-нибудь может дать другое объяснение этим феноменам, опирающееся на лучшее и более естественное основание, он приобретет законное право на нашу благодарность».

Заочную благодарность Аристотеля заслужили те, кто подготовил почву для поиска общих законов движения небесных тел — астрономы эпохи Тихо и Галилея. Сами же эти законы были установлены в 1609-18 гг. талантливым математиком Иоганном Кеплером, который использовал точнейшие данные о движениях планет, полученные Тихо Браге. Кеплер установил три закона движения планет по эллиптическим траекториям вокруг Солнца, но причина такого движения была неясна. И только закон всемирного тяготения и законы механики, окончательно сформулированные Иссаком Ньютоном в 1687 г., дали этому научное объяснение.

Расчеты, произведенные Ньютоном по просьбе английского астронома Эдмонда Галлея (1656—1742), доказали, что яркая комета 1682 г. движется по эллиптической орбите. На основе собственных наблюдений этой кометы и анализа достоверных исторических записей о наблюдениях комет за предшествовавшие 300 лет Галлей составил первый каталог 24 комет, включавший рассчитанные им элементы их орбит. Анализируя эти данные, Галлей заметил близкое совпадение орбитальных элементов у трех комет, появлявшихся в 1531, 1607 и 1682 гг. Он предположил, что это может быть одна и та же комета. Ее период обращения вокруг Солнца оказался 75,5 года, так что следующее появление должно было произойти в 1758 г. Предсказание Галлея подтвердилось: в начале 1759 г. появилась яркая комета, утвердив доверие к законам механики, на основе которых были выполнены расчеты кометных траекторий. К сожалению, Галлей не дожил до этого дня. Открытую им периодическую комету назвали кометой Галлея. Так начались научные исследования комет.

Орбиты комет и их классификация

Согласно законам механики, движение тела под действием гравитационного притяжения к другому телу — к Солнцу — происходит по одному из конических сечений — окружности, эллипсу, параболе или гиперболе. Коническими сечениями они названы не случайно: еще древние греки знали, что если плоскостью рассечь круговой конус перпендикулярно его оси, то получится круг; под небольшими углами к оси — эллипсы; параллельно образующей конуса — парабола, а далее, с уменьшением угла между плоскостью и ось конуса будем получать гиперболы. Не случайно слова эллипс, парабола и гипербола имеют греческое происхождение. Любопытства ради заметим, что возможны еще два конических сечения, также представляющих поведение тела в поле тяготения: это прямая линия и точка.

Солнечная система (Астрономия и астрофизика) - _133.jpg

В уравнениях движения за форму орбиты отвечает эксцентриситет (е), физический смысл которого в том, что он указывает отношение кинетической энергии тела к его потенциальной энергии в гравитационном поле Солнца. Если е<1, тело не может преодолеть притяжение Солнца и движется вокруг него по замкнутой орбите — эллипсу или, в частном случае, окружности. При е⩾1 орбита разомкнута; это гипербола или, в частном случае, парабола. К сожалению, в небесной механике столь изящное решение имеет только задача двух тел, например, Солнце + планета. При взаимодействии трех и более тел простого аналитического выражения для их орбит не существует.

К счастью, Солнце гораздо массивнее любой планеты; поэтому каждая из них движется почти по эллиптической орбите, пока не испытает тесного сближения с другой планетой. За миллиарды лет эволюции более или менее массивные члены Солнечной системы «разобрались» друг с другом и устроились на почти круговых орбитах, гарантирующих отсутствие тесных сближений. Большинство малых тел — астероидов, обитающих между орбитами больших планет, пытаясь избежать их влияния, также устроились на стабильных эллиптических орбитах, поэтому их движение вполне предсказуемо (для надежного расчета такой орбиты достаточно измерить небесные координаты тела всего в трех точках его траектории).

1 ... 73 74 75 76 77 78 79 80 81 ... 88 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название