Теория струн и скрытые измерения вселенной
Теория струн и скрытые измерения вселенной читать книгу онлайн
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Я говорю о проблеме модулей, которая является предметом многих дискуссий и статей, а также источником неприятностей и разочарований. Как мы увидим, относительно простая на первый взгляд задача может увести нас очень далеко от стартовой точки, порой не оставляя никаких ориентиров в поле зрения.
Размер и форма любого многообразия с дырками определяются параметрами, которые называются модулями. Например, двухмерный тор во многих отношениях определяется двумя независимыми петлями, или окружностями, из которых одна обходит вокруг дырки, а вторая идет через нее. Модули, по определению, измеряют размер окружностей, которые, в свою очередь, управляют как размером, так и формой многообразия. Если окружность, проходящая через дырку, меньше второй окружности, то вы получаете тонкое кольцо; если больше, то вы получаете толстое кольцо с относительно маленькой дыркой в середине. Третий модуль описывает степень скрученности тора.
Так обстоят дела с тором. Многообразие Калаби-Яу, как мы уже отмечали, может иметь до пяти сотен дырок, множество многомерных окружностей и, следовательно, характеризуется большим числом модулей — от десятков до сотен. Обычно его представляют как поле в четырехмерном пространстве-времени. Поле для модуля размера присваивает число каждой точке в обычном пространстве, соответствующее размеру (или радиусу) невидимого многообразия Калаби-Яу. Поле такого сорта, которое полностью характеризуется единственным числом в каждой точке пространства, без направления, называется скалярным полем. Примеры скалярных полей вокруг нас: температура, влажность, атмосферное давление и т. д.
Ловушка состоит в том, что если ничто не ограничивает размер и форму многообразия, то вы полностью погружаетесь в вышеупомянутую проблему модулей, которая похоронит вашу надежду вытянуть реальную физику из геометрии. Мы столкнулись с этой проблемой, выяснив, что скалярные поля, связанные с размером и формой многообразия, являются безмассовыми полями, то есть для их изменения не требуется энергия. Другими словами, их можно беспрепятственно изменять. Попытка расчета Вселенной в этих постоянно меняющихся обстоятельствах напоминает «соревнования по бегу, где финишная черта все время движется в дюйме перед вами», — заметил физик Гэри Шуй из Висконсинского университета.[180]
Но проблема еще серьезнее: мы знаем, что такие поля не могут существовать в природе. Поскольку если бы они существовали, то представляли бы собой все виды модульных безмассовых частиц, связанных со скалярными (модульными) полями, летающих вокруг со скоростью света. Эти модульные частицы взаимодействовали бы с другими частицами примерно с той же силой, как гравитоны (частицы, являющиеся переносчиками силы гравитации), и тем самым сеяли бы хаос в теории гравитации Эйнштейна. Но из того, что эта теория в том виде, в каком она описана в общей теории относительности, работает достаточно хорошо, мы можем сделать вывод, что этих безмассовых полей и частиц не существует. Помимо того что существование таких полей несовместимо с известными законами гравитации, оно еще и приводит к существованию пятой силы и, вероятно, других дополнительных сил, которые никто никогда не наблюдал.
Рис. 10.1. Потоки можно рассматривать как силовые линии, не отличающиеся от показанных здесь линий магнитного поля, хотя теория струн включает и более экзотические поля, которые указывают на шесть компактных, невидимых для нас направлений
И это является камнем преткновения. Учитывая, что сегодня большая часть теории струн базируется на компактификации многообразий Калаби-Яу, содержащих эти модули со скалярными полями и безмассовыми частицами, которые, скорее всего, не существуют, не означает ли это, что теория струн сама по себе обречена?
Необязательно. Возможно, существует способ обойти указанную проблему, если учесть другие элементы теории, о которых мы уже знаем, но которые не принимали во внимание, чтобы упростить вычисления.
Если включить эти элементы в расчеты, то ситуация будет выглядеть совершенно по-другому. Эти дополнительные компоненты включают в себя элементы, называемые потоками, представляющими собой поля, подобные электрическим и магнитным, хотя новые поля из теории струн не имеют ничего общего ни с электронами, ни с фотонами.
Давайте снова рассмотрим двухмерный тор, и в частности текучее кольцо, форма которого постоянно меняется, и кольцо становится то тонким, то толстым. Мы можем стабилизировать этот тор, зафиксировав его форму путем оборачивания проволоки сквозь дырку и вокруг нее. Здесь существенную роль играет поток. Многие из нас видели аналогичный эффект, когда после включения магнитного поля железные опилки, рассеянные беспорядочным образом, образуют правильный узор. Поток удерживает опилки на месте до тех пор, пока приложенная к ним дополнительная энергия не заставит их двигаться. Точно так же наличие потоков в нашем случае означает, что для изменения формы многообразия требуется дополнительная энергия, поскольку скалярные безмассовые поля становятся скалярными полями с массой.
Рис. 10.2. Так же как мы можем фиксировать и стабилизировать расположение железных опилок путем приложения к ним магнитного потока, мы, в принципе, можем стабилизировать форму и размер многообразия Калаби-Яу, включив разные потоки в теорию струн (фото любезно предоставлено TechnoFrolics, www.technofrolics.com)
Конечно, шестимерные многообразия Калаби-Яу сложнее, так как они имеют намного больше «дырок», чем «бублик», и сами дырки могут иметь более высокую размерность (до шести измерений). Это означает, что здесь больше внутренних направлений, в которых может течь поток, что приводит к увеличению количества возможных путей прохождения линий поля через дырки. Теперь, когда у нас есть все потоки, проходящие через ваше многообразие, мы можем рассчитать, какое количество энергии запасено в сопутствующих полях. Стэнфордский физик Шамит Качру объяснил, что для расчета энергии необходимо взять интеграл от квадрата напряженности поля «по точной форме компактифицированных измерений», или по поверхности Калаби-Яу. Итак, вы делите пространство на бесконечно малые участки, определяете квадрат напряженности поля на каждом участке, складываете все значения, делите на число участков и получаете среднее значение, или интеграл. «Поскольку форма меняется, то изменяется и значение общей энергии поля, — говорит Качру, — многообразие выбирает такую форму, чтобы минимизировать энергию потока этого поля».[181] Вот так, путем включения потоков в картину можно стабилизировать форму модулей и таким образом стабилизировать форму самого многообразия.
Но это только часть истории, ведь мы забыли об одном важном аспекте процесса стабилизации. Подобно магнитному и электрическому полю, потоки в теории струн квантуются, то есть принимают только целые значения. Вы можете добавить одну единицу потока или две единицы потока, но не можете добавить 1,46 единицы потока. Когда мы говорим, что потоки стабилизируют модуль, мы подразумеваем, что они накладывают на значения модуля определенные ограничения. Вы не можете присвоить модулю любое выбранное значение, а только те значения, которые соответствуют дискретным потокам. В результате набор возможных форм многообразия Калаби-Яу оказывается дискретным.
В предыдущей главе мы уделили много времени гетеротической версии теории струн, но оказывается, что ввести потоки в гетеротические модели довольно сложно. К счастью, в теории струн типа II (категории, включающей оба типа — IIA и IIB), которая иногда является дуальной по отношению к гетеротической теории, это сделать гораздо проще.
Я немного остановлюсь на анализе 2003 года, выполненном в теории струн типа IIB, который заметно выделяется из других типов.
Мы только что обсудили стабилизацию модуля формы для многообразия с потоками. Впервые последовательный способ стабилизации всех модулей Калаби-Яу, как модулей формы, так и модулей размера, был представлен в статье Шамита Качру, Ренаты Каллош, Андрея Линде (все из Стэнфорда) и Сандипа Триведи из Института фундаментальных исследований в Индии; предлагаемый подход авторы статьи назвали KKLT — по первым буквам своих фамилий. Стабилизация размера является решающим фактором для любого типа теории струн, основанной на многообразиях Калаби-Яу, потому что в противном случае нет ничего, способного удержать шесть скрытых измерений от развертывания до бесконечно большого размера, то есть до того размера, который мы предполагаем для основных четырех измерений. Если маленькие, невидимые измерения неожиданно распрямятся и расширятся, то мы с вами будем жить в пространстве-времени из десяти больших измерений, с десятью независимыми направлениями для движения или для поиска наших потерянных ключей, а мы знаем, что наш мир не похож на десятимерный (что дает нам слабую надежду найти потерянные ключи). Что-то удерживает эти измерения от развертывания и что-то, согласно авторам подхода KKLT, является D-бранами.[182]