Астероидно-кометная опасность: вчера, сегодня, завтра
Астероидно-кометная опасность: вчера, сегодня, завтра читать книгу онлайн
Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.
Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Выше предполагалось, что ошибки элементов независимы. На самом деле они корреляционно связаны. Отражением этих связей между ошибками отдельных элементов, найденных по методу МНК, являются величины недиагональных элементов обратной матрицы Q-1, которую называют корреляционной матрицей решения или матрицей ковариаций. Корреляционные связи могут проявляться по-разному. Примером двух элементов, находящихся в жесткой корреляционной зависимости, являются долгота узла и угловое расстояние перигелия от узла при малом наклоне орбиты. Ошибки этих величин близки по величине и противоположны по знаку.
Сделанное выше допущение о независимости случайных ошибок элементов эквивалентно допущению, что все недиагональные элементы матрицы ковариаций равны нулю. В том случае, если это допущение неверно, плотность вероятности многомерного нормального распределения будет иметь более сложный вид по сравнению с (7.7). В показателе экспоненты будет присутствовать сумма не только квадратов, но и смешанных членов вида (xi — xi0)(xj — xj0) с коэффициентами, зависящими от недиагональных элементов матрицы ковариаций (коэффициентов корреляции). Приравнивание суммы в показателе экспоненты к положительной постоянной дает уравнение эллипсоида равной плотности вероятности, но в этом случае ориентация главных осей эллипсоида не совпадает с ориентацией координатных осей. Путем поворота координатных осей уравнение эллипсоида может быть приведено к виду (7.8), в котором отсутствуют смешанные члены.
Корреляционные матрицы, определяющие погрешности элементов и корреляционные связи между ними, находят важное применение при определении погрешностей различных функций этих элементов. Этот вопрос еще будет обсуждаться в следующих параграфах.
Подводя итог, важно обратить внимание на то, что элементы истинной орбиты тела остаются неизвестными. Любая точка внутри доверительного эллипсоида представляет некоторую орбиту, совместимую с имеющимися наблюдениями. Однако вероятность того, что реальная орбита находится в малой окрестности номинального решения, является максимальной по сравнению с другими возможными решениями.
Отметим, что до сих пор мы рассматривали все наблюдения как имеющие одинаковую точность. На практике приходится определять элементы орбиты на основе рядов наблюдений, выполненных с различными точностями (имеющими различные среднеквадратичные ошибки σ1, σ2…, σn). В таких случаях вводят понятие веса наблюдения, определяя его как
где σ0 — произвольное положительное число.
Решение системы условных уравнений в таком случае ищут исходя из обобщенного принципа Лежандра: решение системы должно минимизировать взвешенную сумму квадратов остающихся невязок:
Из этого требования вытекает правило преобразования системы условных уравнений и ее решения: каждое условное уравнение должно быть умножено на корень квадратный из веса соответствующего наблюдения. После этой операции (так называемого приведения к равноточным наблюдениям) система решается так же, как в случае наблюдений, имеющих одну и ту же среднюю ошибку.
7.2. Нелинейный характер распространения ошибок начальных данных. Поиск потенциально опасных сближений астероидов с Землей и оценка вероятности столкновений
После того как номинальная орбита астероида определена, появляется возможность предвычислить его движение в предстоящий период времени и определить, угрожает ли Земле столкновение с ним в обозримом будущем. В зависимости от точности найденной орбиты такие расчеты желательно выполнять для всех АСЗ на интервалах от нескольких лет до нескольких десятков лет, а иногда и до нескольких сотен лет. Прогнозирование движения выполняется методом численного интегрирования уравнений движения, в которых учитываются члены, обусловленные притяжением больших планет и наиболее массивных астероидов (в случаях, требующих особой точности, иногда учитываются возмущения от трехсот наиболее массивных астероидов, см. раздел 7.3). В ходе численного интегрирования фиксируются моменты тесных сближений с Землей и другими большими планетами, которые могут заметным образом трансформировать орбиту тела и тем самым оказать влияние на ее последующие сближения с Землей.
Поскольку столкновения достаточно крупных тел с Землей — весьма редкие события, то при прогнозировании движения тела по номинальной орбите столкновения с Землей, как правило, не обнаруживаются. Нужно, однако, иметь в виду, что номинальная орбита является лишь одной из бесчисленного количества других возможных орбит, элементы которых более или менее близки к элементам номинальной орбиты. Фактическая орбита тела, которая нам не известна, находится где-то внутри области, ограниченной доверительным эллипсоидом (см. раздел 7.1).
Аналогичное представление об области неопределенности начальных условий движения справедливо и в том случае, если рассматривать точки не в пространстве элементов орбит, а в пространстве начальных значений прямоугольных координат и скоростей тел, что имеет несколько большую наглядность.
По мере увеличения числа использованных наблюдений и расширения покрываемого ими временного интервала, ошибки определения элементов, вообще говоря, уменьшаются, а вместе с тем сокращаются и полуоси доверительного эллипсоида. Его центр, соответствующий новому номинальному решению, при этом также несколько смещается в пространстве.
Каждая точка внутри доверительного эллипсоида соответствует некоторой возможной орбите. Тело на возможной орбите мы будем называть виртуальным (возможным) астероидом [Milani et al., 2002].
Если внутри доверительного эллипсоида случайным образом выбрать большое число виртуальных астероидов и следить за их движением на некотором интервале времени, то можно наблюдать, как с течением времени изменяются форма и размеры области пространства, в которой в данный момент заключены виртуальные астероиды. Во всех случаях, с которыми приходится иметь дело на практике, область, первоначально занятая доверительным эллипсоидом, постепенно расширяется и вытягивается вдоль номинальной орбиты тела. Причиной этого являются небольшие различия элементов орбит виртуальных астероидов, причем различие в среднем движении вызывает пропорциональные времени расхождения в средней аномалии, значение которой определяет положение тела на орбите. В результате граница области, занятой виртуальными астероидами, постепенно превращается в очень вытянутый эллипсоид, который можно представить в виде трубки более или менее постоянной ширины, окружающей номинальную орбиту. С течением времени длина трубки может достичь тысяч и миллионов километров и даже превзойти длину орбиты тела.
Большие искажения области пространства, занятой виртуальными астероидами, обусловливают их тесные сближения с Землей или другими планетами. Орбиты с близкими начальными условиями движения по прошествии большого интервала времени могут оказаться весьма далекими друг от друга или, напротив, скрещивающимися друг с другом, что может быть квалифицировано как наложение области возможных движений самой на себя. Во всех этих случаях принято говорить о нарушении линейности задачи. Математически это означает, что приращение некоторой функции начальных значений параметров существенно отличается от ее первого дифференциала и при ее вычислении нельзя пренебрегать членами с дифференциалами высших порядков.
Решение задачи об оценке вероятности встречи астероида с Землей мы рассмотрим, следуя в целом линии, намеченной в работах [Milani et al., 2000; 2002]. На первом этапе будем предполагать, что задача имеет линейный характер, отложив на потом более сложные случаи. Фактически это равносильно предположению, что область пространства, занятая виртуальными астероидами в окрестности сближения номинальной орбиты с Землей, представляет собой эллипсоид, хотя его размеры и форма (вытянутость) отличаются от размера и формы доверительного эллипсоида в начальный момент времени.