Разум побеждает: Рассказывают ученые
Разум побеждает: Рассказывают ученые читать книгу онлайн
Авторы этой книги — ученые нашей страны, представляющие различные отрасли научных знаний: астрофизику, космологию, химию и др. Они рассказывают о новейших достижениях в естествознании, показывают, как научный поиск наносит удар за ударом по религиозной картине мира, не оставляя места для веры в бога — «творца и управителя Вселенной».
Книга рассчитана на самые широкие круги читателей.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Разница состоит лишь в том, что сейчас наука развивается быстрее и потому приходится гораздо чаще, чем прежде, приспосабливаться к новым идеям.
Я хотел бы подчеркнуть следующее. Идеалисты, как объективные, так и субъективные, считают, что все законы природы заложены в некоем духе мировом или в духе данного индивидуума. Но если бы дело действительно обстояло так, то в любых самых экстравагантных законах природы мы не должны были бы видеть ничего противного нашему здравому смыслу. То обстоятельство, что науки, и в первую очередь физика элементарных частиц, все чаще открывают законы и закономерности, вступающие во все большие противоречия со здравым смыслом, на мой взгляд, является одним из самых убедительных аргументов против религиозно-идеалистической точки зрения. Это свидетельствует о том, что сознание формируется под влиянием внешнего мира, а не наоборот.
Какие идеи в современной теоретической физике, на ваш взгляд, представляются наиболее интересными?
Лично мне весьма импонирует идея так называемых квазичастиц. Как известно, современная теоретическая физика исходит из идеи квантово-волнового дуализма. Элементарная частица рассматривается либо как частица, либо как волновой процесс. С другой стороны, любой волновой процесс можно «проквантовать», то есть разложить на частицы. Именно так в физике появились «частицы» света — фотоны, «частицы» тяготения — гравитоны и т. п.
В то же время любой вообще физический процесс может быть представлен как волновой, а следовательно, и проквантован. В этом смысле можно говорить о звуковых «частицах» — фононах, о плазменных «частицах» — плазмонах и т. д. Рассмотрение подобных «частиц» или, лучше сказать, квазичастиц имеет важное значение. Во-первых, оно лишает элементарные частицы их особых привилегий и позволяет взглянуть на разнородные физические явления с единой точки зрения. Во-вторых, изучение свойств квазичастиц имеет для современной физики ничуть не меньшее значение, чем исследование свойств элементарных частиц.
В связи с квазичастицами я хотел бы подчеркнуть еще одно, как мне представляется, чрезвычайно важное обстоятельство. Быть может, самая великая революция в физике состоит в том, что современная наука приходит к пониманию того факта, что не всегда сложное построено из более простого. Атом, разумеется, сложнее электронов и протонов, из которых он построен. Однако, проникая еще дальше в глубь атомного ядра, мы обнаруживаем, что там все обстоит еще значительно сложнее. И приходим к поразительному выводу: может быть, простое строится из сложного.
В поисках единой теории
На вопросы отвечает доктор физико-математических наук В. С. Барашенков
Каково, на ваш взгляд, современное состояние теории элементарных частиц?
После некоторого периода кажущегося застоя в этом разделе современной физики произошел серьезный сдвиг. В частности, в области теории идут исследования проблемы объединения различных известных типов взаимодействия, в первую очередь слабых и электромагнитных, а также сильных. И делается все это на очень глубоком — кварковом уровне. Однако теоретических моделей, описывающих мир элементарных частиц, пока еще слишком много, и в настоящее время трудно какой-либо из них отдать предпочтение.
Важное значение для дальнейшего развития наших представлений об элементарных частицах будет иметь недавнее открытие так называемых пси-частиц, обладающих необычными свойствами. Хотя теоретические предпосылки, допускающие наличие в природе подобных частиц, существовали, само их экспериментальное обнаружение явилось все же довольно неожиданным.
С другой стороны, открытия новых частиц стали важным аргументом в пользу гипотезы кварков. Дело в том, что без этой гипотезы было бы очень трудно объяснить свойства частиц. Более того, существование пси-частиц подтвердило, что кварков должно быть не три, а четыре. К тому же мы сейчас знаем, что каждый из этих кварков имеет три различных «цвета».
Кстати, хотел бы заметить, что мысль о существовании трехцветных кварков еще несколько лет назад была высказана известным советским физиком-теоретиком академиком Н. И. Богомоловым. Теперь она получила убедительные подтверждения.
Какое место занимает теория элементарных частиц в современном естествознании?
Наряду с астрофизикой она всегда играла чрезвычайно важную роль в формировании новых представлений о явлениях окружающего нас мира. Так, она подводит нас к новым представлениям о том, что такое элементарность.
Еще сравнительно недавно считалось само собой разумеющимся, что Вселенная представляет собой последовательность вложенных друг в друга физических систем — от Метагалактики до неделимых элементарных частиц, не имеющих внутренней структуры. Подобная картина хорошо согласовывалась и с нашим здравым смыслом, согласно которому целое всегда больше любой из составляющих его частей.
Но теперь мы знаем, что элементарная частица может содержать в качестве своих составных частей несколько точно таких же частиц, как и она сама. Например, протон на очень короткое время распадается (диссоциирует) на протон и пи-мезон, а каждый пи-мезон на три пи-мезона. Таким образом, в микромире теряют смысл привычные представления о целом и части, о простом и сложном, а следовательно, теряет смысл и привычное для нас представление об элементарности. Появилась идея «прекварков» — еще более фундаментальных частиц, из которых состоят сами кварки.
Пожалуй, наиболее поражающим воображение обстоятельством является постепенно открывающаяся нам все более глубокая взаимосвязь между микропроцессами и макроскопическими явлениями, в том числе явлениями космического порядка. Становится все более ясно, что многие важные свойства космических объектов определяются в конечном счете свойствами микрочастиц.
Как известно, одним из основных положений материалистической диалектики является утверждение о всеобщей взаимосвязи явлений природы. Взаимосвязь микро- и макропроцессов — одно из конкретных выражений этой связи. В качестве объектов, где связь микро и макро реально проявляется, можно привести черные дыры с радиусом 10–13 сантиметров. Их масса должна составлять 108 тонн. Экспериментальное обнаружение таких удивительных объектов — одна из интереснейших задач современной физики.
Чего вы ждете в ближайшем будущем от теории элементарных частиц?
Прежде всего построения единой теории сильных, слабых и электромагнитных взаимодействий. Кроме того, должна быть понята природа кварков и получен ответ на вопрос, почему их не удается наблюдать. Не исключена возможность, что кварки представляют собой особый тип образований, которые могут существовать только в совокупности и которые принципиально невозможно разделить.
Весьма интересных результатов можно ожидать и от дальнейшего изучения нейтрино, играющего очень важную роль в слабых взаимодействиях.
Нуждается ли, по вашему мнению, современная теория элементарных частиц в каких-то принципиально новых идеях?
Экспериментальных данных в этой области сейчас очень много, немало и непонятного. Не исключено, что стараниями теоретиков удастся преодолеть существующие трудности и объяснить экспериментальный материал, не прибегая к каким-то принципиально новым представлениям. Но могут потребоваться и совершенно новые идеи, в том числе и весьма необычные.
Считаете ли вы, что развитие теории элементарных частиц ведет к открытию «все более странного мира»?
Это и в самом деле так. Теория элементарных частиц ведет все дальше от наглядных представлений, она обрастает все более сложными математическими и другими образами, у которых нет аналогий в непосредственно окружающем нас мире.
С другой стороны, новые, непривычные понятия — непривычные даже для физика — постепенно осваиваются, входят в обиход и незаметно становятся привычными. Один из физиков как-то привел показательный пример. Когда он был молодым, в Физическом институте Академии наук однажды обсуждался вопрос о потенциальном барьере для альфа-частиц. И докладчик, чтобы сделать для присутствующих это новое тогда понятие более наглядным, сравнил этот барьер со слоем Хэвисайда, ионизированным слоем земной атмосферы, отражающим короткие радиоволны. А спустя несколько лет — это было уже в послевоенные годы — этому же физику пришлось стать свидетелем того, как один студент, объясняя другому, что такое слой Хэвисайда, сравнил его с потенциальным барьером для альфа-частиц.