-->

Расширяя границы Вселенной: История астрономии в задачах

На нашем литературном портале можно бесплатно читать книгу Расширяя границы Вселенной: История астрономии в задачах, Сурдин Владимир Георгиевич-- . Жанр: Астрономия и Космос / Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Расширяя границы Вселенной: История астрономии в задачах
Название: Расширяя границы Вселенной: История астрономии в задачах
Дата добавления: 15 январь 2020
Количество просмотров: 317
Читать онлайн

Расширяя границы Вселенной: История астрономии в задачах читать книгу онлайн

Расширяя границы Вселенной: История астрономии в задачах - читать бесплатно онлайн , автор Сурдин Владимир Георгиевич

В учебном пособии представлено 426 задач по истории астрономии. Задачам предшествует краткое историческое введение. Издание призвано помочь в преподавании астрономии в высших учебных заведениях и в школах. Оно содержит оригинальные задачи, связанные с развитием астрономии как науки. Многие задачи носят астрофизический характер, поэтому пособие может быть также использовано на занятиях по физике.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 38 39 40 41 42 43 44 45 46 ... 55 ВПЕРЕД
Перейти на страницу:

4.163. Легко заметить, что значения средней плотности космических тел, определённые в XIX веке, оказались весьма точны для планет со спутниками, к числу которых относится и Солнце: его спутниками служат сами планеты. Но для планет без спутников — Меркурия и Венеры — значения средней плотности, вычисленные астрономами

XIX века, оказались довольно грубыми приближениями. Понятно, что это связано с трудностями определения массы планеты, лишённой спутников. До эпохи космонавтики массы таких планет определяли по их гравитационному влиянию на движение далёких тел — других планет и астероидов; точность метода была невелика. В конце XX века эту трудность удалось преодолеть с помощью искусственных спутников (для Венеры) и пролётных зондов (для Меркурия), возмущения в движении которых, вызванные притяжением планеты, были точно измерены радиотехническими методами.

Что касается невысокой точности определения в XIX веке средней плотности Урана и Нептуна, то она связана с трудностями измерения их диаметра: поперечник этих планет виден под углом всего в несколько секунд.

5. Заблуждения и озарения учёных

5.1. Из всех разделов естествознания именно практическая астрономия изучает наиболее простые и наглядные явления, для которых сравнительно легко можно создать математическую модель (например, календарь), что и было сделано уже несколько тысячелетий назад. В то же время, как математическая дисциплина она наименее абстрактна, ибо по большей части имеет дело с реально наблюдаемыми явлениями. Например, сферическая геометрия развивалась только в рамках астрономии и связанной с ней географии.

5.2. Ксенофан считал Землю плоской, бесконечной, уходящей своими корнями в бесконечную глубину. Поэтому светила не могут обращаться вокруг Земли, а должны ежедневно рождаться и гибнуть (или удаляться в бесконечность). Для объяснения различий в видимом движении Луны и Солнца на разных широтах Ксенофан вынужден был предполагать существование целого «набора» одновременно существующих светил.

5.3. По мнению Аристотеля и Птолемея, центр Мира совпадает с центром Земли; но если бы наблюдатель оказался на Луне, то тела падали бы к центру Луны, где влияние центра Мира уже отсутствует.

5.4. Высказывание Анаксимена — это мнение учёного, обладающего весьма неполными данными об объекте исследования. Анаксимен был уверен в материальности небесных объектов. Звёзды он считал твёрдыми телами, находящимися на одинаковом расстоянии от Земли. Чтобы исключить их взаимное перемещение и падение на Землю, он считаел необходимым наличие твёрдой, но невидимой, опоры — «ледообразной» небесной сферы («Фрагменты…», 1989, с. 132).

5.5. Весьма точны высказывания Анаксагора о причине свечения Луны и её рельефе. Солнце признаётся им очень крупным раскалённым телом, что в целом также верно. Поразительно точно угадана и причина свечения Млечного Пути. Хотя рассуждения о природе звёзд и причине их разогрева довольно примитивны, но Анаксагор прав, признавая звёзды материальными телами. Наконец, признаётся возможность падения «камней с неба». Вот как об этом пишет Плиний в «Естественной истории»:

Греки сообщают, что Анаксагор, благодаря своим познаниям в астрономии предсказал, в какие дни упадёт камень с Солнца, что и произошло среди бела дня в области Фракии возле реки Эгоспотамы (камень этот показывают и по сей день: он величиной с гружёный воз и опалённого цвета), причём в те ночи на небе пылала комета. Если поверить в то, что он и впрямь это предсказал, придётся также признать, что провидческая способность Анаксагора была совершенно удивительной; сама наша способность к пониманию природы вещей окажется под угрозой и всё спутается, если допустить, что Солнце либо само камень, либо на нём когда‑либо находился камень. Однако сам факт частого падения [камней с неба] не подлежит сомнению. Один такой, небольших размеров, и по сей день заботливо сохраняется в Абидосском гимнасии; рассказывают, что его падение на материке было предсказано тем же Анаксагором.

Разумеется, даже в нашу эпоху учёным ещё не дано предсказывать падение на Землю метеоритов (хотя в недалёком будущем это представляется вполне возможным). Но при чтении приведённого выше фрагмента не может не поразить ясность, материалистичность и здравый смысл в мышлении древнегреческих философов и обывателей.

5.6. Как видим, эти сообщения не во всём согласуются между собой: материалом для твёрдого неба указан, в первом случае, воздух, во втором — вода, а в третьем — эфир. Но все три их объединяет одна мысль, вероятно, действительно принадлежащая Эмпедоклу: «мир материален и он эволюционирует». С ней вполне согласится современный учёный.

Весьма актуально также звучит сообщение о взглядах Эмпедокла, дошедшее до нас от Диогена Лаэртия. Воззрения его таковы: «элементов четыре: огонь, вода, земля и воздух, и ещё Любовь, которой они соединяются, и Распря, которой они разделяются». Как видим, присутствует не только Пятый Элемент, но и шестой.

5.7. Главное в идее Д. И. Менделеева — указание на системную, иерархическую организацию вещества. Мир представляет собой иерархию систем объектов — полагал Менделеев и даже указывал на возможность сложной структуры самих атомов. Термин атом (от греч. неделимый, неразрезаемый) Менделеев считал неудачным и предпочитал ему термин индивидуум, как предполагающий не только обособленность, но и возможность сложной внутренней структуры. Менделеев разъяснял, что слово атом значит по — гречески то же, что индивид по — латински. Слово индивид издавна и постоянно прилагают и к человеку, и к любому животному и растению. Но кто же сомневается, что животные и растения делимы?

«А потому лучше было бы назвать атомы индивидуумами, неделимыми… Индивидуум механически и геометрически делим и только в определённом реальном смысле неделим. Земля, солнце, человек, муха суть индивидуумы, хотя геометрически делимы». Так утверждал Дмитрий Иванович в 1906 году. Разумеется, он был далёк от того, чтобы проводить прямую аналогию между объектами микро- и мегамира: приведённая цитата — лишь образная иллюстрация из книги Менделеева «Основы химии».

5.8. Газ представляет собой систему сталкивающихся корпускул, не обладающих заметными силами дальнодействия. В отличие от него, звёздный ансамбль — это система гравитационно связанных (эффект дальнодействия) не сталкивающихся тел. Однако многие механические проявления газовых и звёздных систем подобны.

5.9. Роль центральной массы в Галактике выполняет сгущение звёзд — галактическое ядро, в центре которого, по всей видимости, находится очень массивная чёрная дыра (около 2,5 млн. масс Солнца). Уже в 1948 году советские учёные получили изображение центральной части Галактики при помощи электронно — оптического преобразователя, чувствительного к инфракрасным лучам, для которых межзвёздная пыль — «завеса чёрного вещества» — не помеха.

5.10. Гюйгенс открыл Большую туманность Ориона, но суть открытия ещё долго оставалась непонятой. Позднее выяснилось, что до Гюйгенса, возможно, первым в Европе, в 1618 г. эту туманность наблюдал в телескоп швейцарский астроном Иоганн Цизат (1586–1657), но не обратил на неё должного внимания.

5.11. Речь идёт о внегалактических туманностях, или, по современной терминологии — галактиках.

5.12. Тёмные прогалы в Млечном Пути вызваны плотными облаками космической пыли, экранирующими излучение более далёких звёзд

Галактики. Одним из первых эту мысль сформулировал В. Я. Струве (1793–1864): продолжая изучение Галактики методом «звёздных черпков» Гершеля, он высказал уверенность в существовании межзвёздного поглощения света и оценил его величину в 0,5m/кпк. Лишь столетие спустя была доказана справедливость этого предположения и довольно высокая точность оценки Струве. Поглощение света стало первым свидетельством существования холодного межзвёздного вещества.

1 ... 38 39 40 41 42 43 44 45 46 ... 55 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название