Астероидно-кометная опасность: вчера, сегодня, завтра
Астероидно-кометная опасность: вчера, сегодня, завтра читать книгу онлайн
Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.
Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Если бы поверхности астероидов были абсолютно белыми, то их колор-индексы не отличались бы от солнечных. На самом деле это не так. Тщательное определение колор-индексов астероидов показывает, что значения B-V лежат в пределах приблизительно от +0,6 до +0,95 звездной величины, а значения U-V лежат в пределах от +0,7 до +1,5 звездной величины (для Солнца U-V = +0,73). Таким образом, поверхности астероидов отличаются по своему цвету. Сопоставление колор-индексов астероидов с альбедо их поверхностей показывает, что между теми и другими существует определенная корреляция, которая может быть использована для их классификации.
На рис. 3.25 и 3.26 хорошо заметно, что распределение колор-индексов, как и распределение альбедо, имеет бимодальный характер. Одна группа «красноватых» астероидов, концентрирующаяся вверху справа, имеет большие значения колор-индексов и сравнительно большие альбедо. Другая группа астероидов внизу слева имеет существенно меньшие значения колор-индексов и небольшие по величине альбедо. Эта корреляция позволяет путем достаточно легко выполняемого определения колор-индекса астероида получить некоторое представление о его альбедо и, следовательно, о его фотометрическом диаметре (если определены элементы орбиты и произведена оценка абсолютной звездной величины астероида). Кроме того, знание колор-индекса, как это будет видно в дальнейшем, позволяет сделать предварительное заключение о вероятном минералогическом и композиционном составе астероида.
Рис. 3.25. Зависимость альбедо от показателя цвета B-V [Veeder and Tedesco, 1992]
Рис. 3.26. Зависимость альбедо от показателя цвета U-V [Veeder and Tedesco, 1992]
Добавим, что колор-индексы АСЗ в среднем весьма близки к их значениям для астероидов Главного пояса. Так, среднее значение U-B для АСЗ равно 0,445 ± 0,013, а B-V = 0,856 ± 0,013, тогда как для астероидов Главного пояса соответствующие значения равны 0,453 ± 0,008 и 0,859 ± 0,006 [Binzel et al., 2002].
3.12. Физическая классификация астероидов
До 70-х годов XX в. мало что было известно о физических свойствах и минералогическом составе астероидов. Предположение о том, что метеориты являются осколками астероидов, не было в достаточной мере подкреплено наблюдательными данными. Положение стало меняться, когда в конце 60-х годов были разработаны и стали применяться на практике поляриметрический и радиометрический методы определения альбедо астероидов. Очень скоро выяснилось, что альбедо различных астероидов варьируется в широких пределах — от нескольких до многих десятков процентов, и потому может являться важным индикатором различий между объектами. Кроме того, когда были сопоставлены альбедо десятков астероидов, стало ясно, что распределение астероидов по величине альбедо имеет бимодальный характер: достаточно четко просматривалось наличие двух групп астероидов — темных, со значениями альбедо, группирующимися около 0,03–0,05, и светлых, с средним значением альбедо около 0,15, при явном недостатке или, как сначала казалось, полном отсутствии значений альбедо около 0,1 (рис. 3.17). Имеющиеся для многих астероидов значения колор-индексов также указывали на наличие двух групп астероидов.
Первая физическая классификация (таксономия) астероидов отражала эту бимодальность распределения. Как уже указывалось в разделе 3.8, астероиды с низкими альбедо были отнесены к классу углистых, или С-астероидов, поскольку наиболее вероятным веществом, обеспечивающим их низкое альбедо, является углерод, обильно представленный в метеоритах — углистых хондритах. Астероиды с высоким альбедо были отнесены к широкому классу каменных астероидов, получивших обозначение S (от «stony» — каменный). Объекты, которые не вписывались в эту классификацию, первоначально получили обозначение U (от «unclassified» — неклассифицируемые).
Большую роль в дальнейшей классификации астероидов сыграло изучение их спектральной отражательной способности, т. е. изменения альбедо в зависимости от длины волны света. Альбедо различных веществ, в том числе альбедо поверхностных слоев астероидов, зависит от длины волны света. Сравнивая лучистую энергию, падающую на поверхность в определенном диапазоне длин волн, с отраженной энергией в данном диапазоне (фактически, с блеском), можно определить альбедо как функцию длины волны. Практически измерение альбедо в различных участках спектра до середины 80-х годов XX в. проводилось с помощью системы более или менее узкополосных фильтров (в настоящее время с этой целью используется комбинация спектрографа и ПЗС-приемника излучения; см. ниже). Плавная кривая, соединяющая найденные значения альбедо в различных участках спектра, представляет собой кривую спектральной отражательной способности.
Теоретические соображения и эксперименты с различными образцами метеоритного вещества, чистыми минералами и их смесями показывают, что форма кривой и величина альбедо в различных участках спектра могут характеризовать состав и состояние поверхностных слоев астероидов. Для ряда распространенных в метеоритах минералов, таких как пироксен и оливин, характерные особенности кривых (полосы поглощения) лежат близко к красному концу видимого спектра или в ближней инфракрасной области. Поэтому важно было распространить исследование отражательной способности астероидов на красную и инфракрасную области, которые не охватывались стандартной UBV — фотометрией. В работе [Chapman and Gaffey, 1979] были изучены спектры почти трехсот астероидов, полученные с помощью большого числа (до 25) светофильтров, покрывающих диапазон длин волн от 0,3 до 1,1 мкм. В дальнейшем спектральные кривые были получены для почти шестисот астероидов с помощью восьми более широкополосных фильтров, покрывающих тот же диапазон длин волн [Zellner et al., 1985]. Эти работы послужили основой для разработки наиболее употребительной таксономии астероидов по Толену [Tholen, 1984].
Толен подразделил совокупность исследованных астероидов на 14 классов (некоторые из них появились ранее в работах других исследователей) в соответствии с характерными особенностями кривых спектральной отражательной способности и значением визуального альбедо. Возможная интерпретация спектров при этом не учитывалась. Принадлежность астероидов к одному классу не предполагает обязательного сходства их минералогического состава. Вместе с тем, как оказалось, классификация по Толену отражает некоторые важные минералогические особенности астероидов и их термическую историю.
На рис. 3.27 приведены усредненные отражательные спектры астероидов 14 классов, каждый из которых обозначен одной буквой. Спектральная кривая, обозначенная как ЕМР, является общей для трех классов Е, М и Р. Эти три класса различаются характерными для них значениями альбедо. В тех случаях, когда информация о величине альбедо отсутствует, все три класса объединяются в таксономии по Толену в один класс X. В некоторых случаях, когда тот или иной астероид бывает затруднительно отнести к определенному классу, допускается использование для его характеристики нескольких букв, чтобы указать наличие черт, характерных для соответствующих классов.
Еще с 70-х годов XX в. известно, что вид астероидных спектров в видимой области определяется тремя основными чертами: 1) наличием более или менее глубокой полосы поглощения в области, близкой к ультрафиолетовому концу спектра, обусловленной взаимодействием фотонов с ионами железа Fe2+ в кристаллической решетке вещества поверхностных слоев астероидов; 2) общим наклоном спектральной кривой в области 0,55 мкм и далее с увеличением длины волны света; наклон (подъем к красному концу спектра) или его отсутствие обусловлены наличием или отсутствием вещества, вызывающего покраснение спектра; в качестве такого вещества могут выступать металлы (Fе, Ni) или органические соединения; 3) присутствием или отсутствием полосы поглощения, обусловленной силикатами, в области от 0,7 мкм и более с минимумом обычно около 1 мкм. Все три характерные особенности спектров легко просматриваются на рис. 3.28 а. Более детальное описание таксономии по Толену содержится в табл. 3.7, заимствованной из работы [Lupishko and Di Martino, 1998]. В последней графе таблицы указываются возможные метеоритные аналоги для астероидов каждого класса. Заметим, что класс К, отсутствовавший в оригинальной работе Толена, был введен Беллом [Bell, 1988] специально для описания астероидов семейства Эос.