Программирование на языке пролог
Программирование на языке пролог читать книгу онлайн
Книга английских специалистов, содержащая описание основ логического программирования и особенностей языка Пролог – базового языка ЭВМ пятого поколения. Области применения этого языка связаны с разработкой экспертных систем, интеллектуальных баз данных, обработкой естественного языка, разработкой компиляторов ЭВМ. Книга полезна для первого ознакомления с языком Пролог.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
мужчина(джон) -› человек (джон)
могла бы представлять высказывание: то, что Джон является мужчиной, влечет то, что он является человеком (если Джон мужчина, то он – человек). Понятия импликации и эквивалентности иногда при первом знакомстве с ними представляются несколько сложными. Мы говорим, что α влечет β, если всякий раз, когда α истинно, то β также истинно. Мы говорим, что α эквивалентно β, если α истинно в точности в тех же случаях, что и β. В действительности, эти понятия могут быть определены через понятия 'и', 'или', 'не'. А именно:
α-›β значит то же самое, что (~α)#β
α‹-›β значит то же самое, что и (α&β)#(~α&~β)
α‹-›β также значит то же самое, что и (α-›β)&(α-›β)
До сих пор ничего не было сказано о том, что значат переменные, входящие в состав высказывания. В действительности, использование переменных имеет смысл лишь в случае, когда они вводятся с помощью кванторов. Кванторы позволяют делать высказывания о множествах объектов и формулировать утверждения, истинные для этих множеств. В исчислении предикатов имеются два квантора. Если ν обозначает переменную, а ρ – это произвольное высказывание, то коротко значение кванторов можно выразить так:
Исчисление предикатов | Обозначение в книге | Значение |
---|---|---|
∀ν. ρ | all(ν, ρ) | «ρ истинно для всех значений переменной ν» |
∃ν.ρ | exists(ν, ρ) | «существует такое значение переменной ρ, для которого ν истинно» |
Первый из кванторов называется квантором общности, так как он указывает на все объекты, существующие во вселенной («для всех ν,…»). Второй квантор называется квантором существования, так как он указывает на существование некоторого объекта (или объектов) («существует ν такой что…»). В качестве примера приведем формулу
all(X, мужчина(Х) -› человек(Х))
которая значит, что какое бы значение X мы не выбрали, если X является мужчиной, то тогда X – человек. Эту формулу можно прочитать так: для любого X, если X является мужчиной, то X является человеком. Или в более простой формулировке: каждый мужчина является человеком. Аналогично
exists(Z, отец(джон,2)& женщина(Z)))
значит, что существует объект, обозначаемый Z такой, что Джон является отцом Z и Z – женщина. Эту формулу можно прочитать так: существует Z такой, что Джон является отцом Z и Z – женщина. Или в более естественной формулировке: Джон имеет дочь. Ниже приведены две более сложные формулы исчисления предикатов:
all(X, животное(Х) -› exists(Y,мать(X,Y)))
all(X, формула_исчисления_предикатов(Х) ‹-› атомарная_формула(Х) # составная_формула(Х))
10.2. Приведение формул к стандартной форме
Как было показано в предыдущем разделе, формулы исчисления предикатов, записанные с использованием связок -› (импликация) и ‹-› (эквивалентность), могут быть переписаны лишь с использованием связок& (конъюнкция), # (дизъюнкция) и ~ (отрицание). В действительности, существует множество разных форм записи формул, и мы ни в коей мере не принесли бы в жертву выразительность формул, если бы должны были полностью отказаться от использования, например, #, -›, ‹-› и exists(X, P). Как следствие этой избыточности, существуют много различных способов записи одного и того же высказывания. При необходимости выполнять формальные преобразования формул исчисления предикатов это оказывается очень неудобным. Было бы значительно лучше, если бы все, что мы хотим сказать, можно было выразить единственным способом. Поэтому здесь будет рассмотрен способ преобразования формул исчисления предикатов к специальному виду – стандартной форме, - обладающему тем свойством, что число различных способов записи одного и того же утверждения меньше по сравнению с использованием других форм. В действительности будет показано, что высказывание исчисления предикатов, представленное в стандартной форме, очень похоже на некоторое множество утверждений языка Пролог. Так что исследование стандартной формы имеет существенное значение для понимания связи между Прологом и математической логикой. В приложении В будет коротко описана программа на Прологе, автоматически транслирующая формулы исчисления предикатов в стандартную форму.
Процесс приведения формулы исчисления предикатов к стандартной форме состоит из шести основных этапов.
Процедура начинается с замены всех вхождений -› и ‹-› в соответствии с их определениями, данными в разд. 10.1. Так, например, формула
аll(Х,мужчина(Х) -› человек(Х))
будет преобразована в формулу
аll(Х,~мужчина(Х) # человек(Х))
На этом этапе обрабатываются случаи применения отрицания к формулам, не являющимся атомарными. Если такой случай имеет место, то формула переписывается по соответствующим правилам. Так, например, формула
~(человек (цезарь)& существующий (цезарь))
преобразуется в
~человек(цезарь) # существующий (цезарь)
а
~аll(Х, человек (X))
преобразуется в
exists(Х,~человек(Х))
Преобразования, выполняемые на втором этапе, основаны на следующих фактах:
~(α&β) значит то же самое, что и (~α) # (~β)
~exists(ν,ρ) значит то же самое, что и all(ν,~ρ)
~all(ν,ρ) значит то же самое, что и exists(ν,~ρ)
После завершения второго этапа каждое вхождение отрицания в формулу будет относиться лишь к атомарным подформулам. Атомарная формула или ее отрицание называется литералом. На всех последующих этапах литералы обрабатываются как единый элемент, а то, какие литералы представлены отрицанием, будет существенным лишь в самом конце.
На следующем этапе удаляются кванторы существования. Это делается путем введения новых констант – сколемовских констант - вместо переменных связанных (введенных) квантором существования. Вместо того чтобы говорить, что существует объект, обладающий некоторым множеством свойств, можно ввести имя для такого объекта и просто сказать, что он обладает данными свойствами. Это соображение лежит в основе введения сколемовских констант. Сколемизация более существенно изменяет логические свойства формулы, чем все обсуждавшиеся ранее преобразования. Тем не менее, она обладает следующим важным свойством. Если имеется формула, то интерпретация, в которой эта формула истинна, существует тогда и только тогда, когда существует интерпретация, в которой истинна формула, полученная из первой в результате сколемизации. Такая форма эквивалентности формул вполне достаточна для наших целей. Так, например, формула
exists(X,женщина(X)& мать(Х,ева))
в результате сколемизации преобразуется в формулу
женщина(g1)& мать(g1, ева)
где g1 – некоторая новая константа, не использовавшаяся ранее. Константа g1 представляет некоторую женщину, мать которой есть Ева. То, что для обозначения константы использован символ» отличный от использовавшихся ранее, существенно, так как в высказывании ничего не говорится о том, что какой-то конкретный человек является дочерью Евы. В утверждении говорится лишь о том, что такой человек существует. Может оказаться, что g1 будет соответствовать тот же самый человек, который соответствует другой константе, но это уже дополнительная информация, никак не выраженная в высказывании.
Если формула содержит кванторы общности, то процедура сколемизации уже не столь проста. Например, если в формуле [17]
аll(Х, человек(Х) -› exists(Y,мать(X,Y)))