Сущность технологии СОМ. Библиотека программиста
Сущность технологии СОМ. Библиотека программиста читать книгу онлайн
В этой книге СОМ исследуется с точки зрения разработчика C++. Написанная ведущим специалистом по модели компонентных объектов СОМ, она раскрывает сущность СОМ, помогая разработчикам правильно понять не только методы модели программирования СОМ, но и ее основу. Понимание мотивов создания СОМ и ее аспектов, касающихся распределенных систем, чрезвычайно важно для тех разработчиков, которые желают пойти дальше простейших приложений СОМ и стать по-настоящему эффективными СОМ-программистами. Показывая, почему СОМ для распределенных систем (Distributed СОМ) работает именно так, а не иначе, Дон Бокс дает вам возможность применять эту модель творчески и эффективно для ежедневных задач программирования.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
GIT является оптимизацией CoMarshalInterface / CoUnmarshalInterface, которая допускает обращение к интерфейсным указателям из всех апартаментов процесса. Внутри СОМ реализуется одна GIT на процесс. GIT содержит маршалированные интерфейсные указатели, которые могут быть эффективно демаршалированы несколько раз внутри одного и того же процесса. Это семантически эквивалентно использованию табличного маршалинга, однако GIT можно использовать как для объектов, так и для заместителей. GIT выставляет интерфейс IGlobalInterfaceTable:
[uuid(00000146-0000-0000-C000-000000000046), object, local ]
interface IGlobalInterfaceTable : IUnknown {
// marshal an Interface into the GIT
// маршалируем интерфейс в GIT
HRESULT RegisterInterfaceInGlobal ( [in, iid_is(riid)] IUnknown *pItf, [in] REFIID riid, [out] DWORD *pdwCookie);
// destroy the marshaled object reference
// уничтожаем маршалированную объектную ссылку
HRESULT RevokeInterfaceFromGlobal ( [in] DWORD dwCookle);
// unmarshal an interface from the GIT
// демаршалируем интерфейс из GIT
HRESULT GetInterfaceFromGlobal ( [in] DWORD dwCookie, [in] REFIID riid, [out, iid_is(riid)] void **ppv); }
Клиенты получают доступ к GIT для своего процесса, вызывая CocreateInstance с использованием класса CLSID_StdGlobalInterfaceTable. Каждый вызов CoCreateInstance с применением этого CLSID возвращает указатель на одну и ту же GIT в процессе. Так же как к интерфейсу IStream, возвращенному CoMarshalInterThreadInterfaceInStream, к интерфейсным указателям на GIT можно обратиться из любого апартамента без обязательного маршалинга.
Для того чтобы сделать интерфейсный указатель доступным для всех апартаментов процесса, апартамент, содержащий этот интерфейсный указатель, должен зарегистрировать его в GIT путем вызова метода RegisterInterfaceInGlobal. GIT вернет вызывающей программе DWORD, который представляет глобальный указатель для всех апартаментов процесса. Этот DWORD может быть использован из любого апартамента процесса для демаршалинга нового заместителя путем вызова метода GetInterfaceFromGlobal. Этот же DWORD можно использовать для повторного демаршалинга заместителей до тех пор, пока вызов RevokeInterfaceFromGlobal не объявит глобальный интерфейсный указатель недействительным. Приложения, использующие эту глобальную интерфейсную таблицу (GIT ), обычно связывают один интерфейсный указатель на весь процесс при запуске:
IGlobalInterfaceTable *g_pGIT = 0; HRESULT Init0nce(void) {
assert(g_pGIT == 0);
return CoCreateInstance(CLSID_StdGlobalInterfaceTable, 0, CLSCDX_INPROC_5ERVER, IID_IGlobalInterfaceTable, (void**)&g_pGIT);
}
Когда глобальная интерфейсная таблица является доступной, передача интерфейсного указателя в другой апартамент сводится к простой регистрации указателя в глобальной интерфейсной таблице:
HRESULT WritePtrToGlobalVariable(IRacer *pRacer) {
// where to write the marshaled ptr
// куда записывать маршалированный указатель extern
DWORD g_dwCookie;
// thread synchronization
// синхронизация потока extern HANDLE g_heventWritten;
// write marshaled object reference to global variable
// записываем маршалированную объектную ссыпку в глобальную переменную
HRESULT hr = g_pGIT->RegisterInterfaceInGlobal( pRacer, IID_IRacer, &g_dwCookie);
// signal other thread that ptr is now available
// сообщаем другому потоку о доступности указателя SetEvent(g_heventWritten); return hr; }
Следующий код корректно демаршалирует объектную ссылку и может вызываться из любого апартамента одного и того же процесса:
HRESULT ReadPtrFromGlobalVariable(IRacer * &rpRacer, bool bLastUnmarshal) {
// where to write the marshaled ptr
// куда записывать маршалированный указатель extern DWORD g_dwCookie;
// thread synchronization
// синхронизация потока extern
HANDLE g_heventWritten;
// wait for other thread to signal that ptr is available
// ожидаем другой поток, чтобы сигнализировать о доступности указателя
WaitForSingleObject(g_heventWritten, INFINITE);
// read marshaled object reference from global variable
// читаем маршалированную объектную ссылку из глобальной переменной
HRESULT hr = g_pGIT->GetInterfaceFromGlobal( g_dwCookie, IID_IRacer, (void**)&rpRacer);
// if we are the last to unmarshal, revoke the pointer
// если мы поспедние в очереди на демаршалинг, то
// аннулируем указатель
if (bLastUnmarshal) g_pGIT->RevokeInterfaceFromGlobal(g_dwCookie);
return hr; }
Отметим принципиальную разницу между этими фрагментами кода и примерами с применением CoMarshalInterThreadInterfaceInStream. Она состоит в том, что код, основанный на GIT, способен демаршалировать более чем один заместитель.
Архитектура стандартного маршалинга
Как уже упоминалось ранее в этой главе, СОМ использует протокол ORPC для всех обращений между апартаментами. Это обстоятельство может представлять интерес с точки зрения архитектуры, но некоторые разработчики желают программировать коммуникационный код низкого уровня. Для того чтобы воспользоваться ORPC-коммуникациями, объектам СОМ не требуется делать ничего, кроме реализации IUnknown, для осуществления межапартаментных обращений по протоколу ORPC. По умолчанию при первом вызове CoMarshalInterface для объекта этот объект опрашивается, желает ли он управлять своими собственными межапартаментными связями. Этот вопрос приходит в форме запроса QueryInterface об интерфейсе IMarshal. Большинство объектов не реализуют интерфейс IMarshal и дают отказ на этот запрос со стороны QueryInterface, показывая тем самым, что их вполне удовлетворяет управление всеми связями самой СОМ посредством вызовов ORPC. Те объекты, которые реализуют интерфейс IMarshal, показывают этим, что ORPC им не подходит и что разработчик объекта предпочитает управлять всеми межапартаментными связями посредством специальных заместителей. Когда объект реализует интерфейс IMarshal, то все ссылки на этот объект будут подвергнуты специальному маршалингу. Специальный маршалинг будет обсуждаться позже в данной главе. Если же объект не реализует интерфейс IMarshal, то все ссылки на этот объект будут маршалированы стандартно. Большинство объектов предпочитают использовать стандартный маршалинг, и поэтому ему уделено основное внимание в данном разделе.
Когда CoMarshalInterface впервые определяет, что объект желает использовать стандартный маршалинг, то создается специальный СОМ-объект под названием администратор загушек (stub manager). Это программный модуль, управляющий всеми интерфейсными заглушками активного объекта.
Администратор заглушек действует как идентификационная единица объекта во всей сети и единственным образом идентифицируется Идентификатором Объектов (Object Identifier – OID), который является идентификатором этого объекта во всех апартаментах. Между администраторами заглушек и идентификационными единицами СОМ-объектов имеется взаимно однозначное соответствие. Каждый администратор заглушек ссылается на ровно один СОМ-объект. Каждый СОМ-объект, использующий стандартный маршалинг, будет иметь ровно один администратор заглушек. Администратор заглушек содержит но крайней мере одну неосвобожденную ссылку на объект, которая удерживает ресурсы объекта в памяти. В этом смысле администратор заглушек является еще одним внутрипроцессным клиентом для объекта. Администратор заглушек следит за числом неосвобожденных внешних ссылок и будет существовать до тех пор, пока где-либо в сети останется хотя бы одна неосвобожденная ссылка. Большинство внешних ссылок являются просто заместителями, хотя промежуточные маршалированные объектные ссылки могут удерживать заглушки, чтобы быть уверенными, что в момент создания первого заместителя объект еще существует. Когда неосвобожденные заместители или ссылки уничтожаются, администратор заглушек извещается об этом и декрементирует свой счетчик внешних ссылок. Если уничтожена последняя внешняя ссылка на администратор заглушек, то последний самоуничтожается, освобождая свои неосвобожденные ссылки на действующий объект. Это имитирует эффект наличия на стороне клиента ссылок, поддерживающих объект. Методы явного контроля за временем жизни заглушки будут обсуждаться далее в этой главе.